Abstrakt
sztuczna inteligencja; głębokie uczenie się; uczenie maszynowe; kształcenie na odległość; nauka online.
1. Wstęp
2. Przegląd literatury
-
ogólne perspektywy bibliometryczne;
-
oraz trendy i wzorce badawcze w wybranych publikacjach?
3. Metody
3.1. Projekt badawczy
3.2. Kryteria włączenia i próbka
Korpus badawczy | |
Baza danych | Scopus |
Okres | 1999–2022 |
Zapytania | |
Zapytania tematyczne | TITLE („sztuczna inteligencja” LUB „uczenie maszynowe” LUB „uczenie głębokie”) |
Boolowski parametr wyszukiwania | I |
Zapytania specyficzne dla pól | TYTUŁ („nauczanie na odległość” LUB „nauczanie na odległość” LUB „nauczanie na odległość” LUB „nauczanie na odległość” LUB „nauczanie na odległość” LUB „nauczanie na odległość” LUB „edukacja online” LUB „nauczanie online” LUB „nauczanie online” LUB „kurs online ” LUB „e-learning” LUB „e-learning” LUB „m-learning” LUB „edtech” LUB „technologia edukacyjna”) |
Identyfikacja | Łączna liczba zidentyfikowanych dokumentów w Scopus (n = 301) |
Ekranizacja | Wyłączone dokumenty w innych językach (n = 2) |
Wyłączone dokumenty nieempiryczne (łącznie n = 18; rozdział w książce [n = 16], redakcja [n = 5], książka [n = 1], errata [n = 1]) | |
Dołączony | W końcowym korpusie badawczym znalazło się łącznie 276 artykułów (142 artykuły; 134 publikacje konferencyjne). |
3.3. Analiza danych i procedury badawcze
3.4. Mocne strony i ograniczenia
4. Ustalenia i dyskusje
4.1. Ogólne spojrzenie bibliometryczne
4.2. Trendy i wzorce badawcze
4.2.1. Analiza tytułów
4.2.2. Analiza abstraktu i słów kluczowych
5. Wnioski i implikacje
Autorskie Wkłady
Finansowanie
Oświadczenie instytucjonalnej komisji rewizyjnej
Oświadczenie o świadomej zgodzie
Oświadczenie o dostępności danych
Konflikt interesów
Bibliografia
- Pelletier, K.; Brązowy, M.; Brooks, DC; McCormack, M.; Reeves, J.; Arbino, N.; Bozkurt, A.; Crawford, S.; Czerniewicz L.; Gibson, R.; i in. Educause Horizon Raport Nauczanie i uczenie się Edycja. Edukacja. 2021. Dostępne online: https://www.learntechlib.org/p/219489/ (dostęp: 18 grudnia 2022).
- Pelletier, K.; McCormack, M.; Reeves, J.; Robert, J.; Arbino, N.; Al-Freih, WM; Dickson-Deane, C.; Guevara, C.; Koster, L.; Sanchez-Mendiola, M.; i in. Educause Horizon Raport Nauczanie i uczenie się Edycja. Edukacja. 2022. Dostępne online: https://www.learntechlib.org/p/221033/ (dostęp: 17.12.2022).
- Zawacki-Richter, O.; Marín, VI; Bond, M.; Gouverneur, F. Systematyczny przegląd badań nad zastosowaniami sztucznej inteligencji w szkolnictwie wyższym – gdzie są pedagodzy? Int. J. Eduk. Techno. Wysoki. Eduk. 2019 , 16 , 39. [ Google Scholar ] [ CrossRef ][ Wersja zielona ]
- Ouyang, F.; Zheng, L.; Jiao, P. Sztuczna inteligencja w internetowym szkolnictwie wyższym: systematyczny przegląd badań empirycznych w latach 2011-2020. Educ. Inf. Techno. 2022 , 27 , 7893–7925. [ Google Scholar ] [ CrossRef ]
- Tang, Kentucky; Chang, CY; Hwang, GJ Trendy w e-learningu wspieranym przez sztuczną inteligencję: systematyczny przegląd i analiza sieci współcytowania (1998–2019). Oddziaływać. Uczyć się. Otaczać. 2021 , 1–19. [ Google Scholar ] [ CrossRef ]
- Bozkurt, A.; Karadeniz, K.; Baneres, D.; Guerrero-Roldán, AE; Rodríguez, ME Sztuczna inteligencja i refleksje z krajobrazu edukacyjnego: przegląd badań nad sztuczną inteligencją za pół wieku. Zrównoważony rozwój 2021 , 13 , 800. [ Google Scholar ] [ CrossRef ]
- Casas-Roma, J.; Conesa, J. Przegląd literatury na temat sztucznej inteligencji i etyki w nauczaniu online. W inteligentnych systemach i analizie danych edukacyjnych w edukacji online ; Caballé S., Demetriadis SN, Gómez-Sánchez E., Papadopoulos PM, Weinberger A., wyd.; Prasa akademicka: Cambridge, MA, USA, 2021; s. 111–131. [ Google Scholar ] [ CrossRef ]
- Nassoura, AB Zastosowane aplikacje sztucznej inteligencji w instytucjach szkolnictwa wyższego: przegląd systematyczny. Webologia 2022 , 19 , 1168–1183. [ Google Scholar ]
- Gough, D.; Oliver S.; Thomas, J. Wprowadzenie przeglądów systematycznych. We wstępie do przeglądów systematycznych ; Gough, D., Oliver, S., Thomas, J., wyd.; Sage: Londyn, Wielka Brytania, 2012; s. 1–18. [ Google Scholar ]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, WM Jak przeprowadzić analizę bibliometryczną: przegląd i wytyczne. J. Autobus. Rez. 2021 , 133 , 285–296. [ Google Scholar ] [ CrossRef ]
- Fayyad, U.; Grinstein, GG; Wierse, A. (red.) Wizualizacja informacji w eksploracji danych i odkrywaniu wiedzy ; Morgan Kaufmann: San Francisco, Kalifornia, USA, 2002. [ Google Scholar ]
- Hansen, DL; Shneiderman, B.; Smith, MA; Himelboim, I. Analizowanie sieci mediów społecznościowych za pomocą Nodexl: Insights from a Connected World , wyd. 2; Morgan Kaufmann: Cambridge, MA, USA, 2020. [ Google Scholar ]
- Aggarwal, CC; Zhai, C. Wydobywanie danych tekstowych ; Springer Science & Business Media: Boston, MA, USA, 2012. [ Google Scholar ] [ CrossRef ]
- van der Maaten, L.; Hinton, G. Wizualizacja danych za pomocą t-SNE. J. Mach. Uczyć się. Rez. 2008 , 9 , 2579–2605. [ Google Scholar ]
- Thurmond, Wirginia Punkt triangulacji. J. Nurs. Uczony. 2001 , 33 , 253–258. [ Google Scholar ] [ CrossRef ]
- Scopus. Dostępne online: https://www.elsevier.com/solutions/scopus/how-scopus-works/content (dostęp: 13 lipca 2022 r.).
- Strona, MJ; McKenzie, JE; Bossuyt, PM; Boutron, I.; Hoffmann, TC; Mulrow, CD; Shamseer, L.; Tetzlaff, JM; Akl, EA; Brennan, SE; i in. Oświadczenie PRISMA 2020: Zaktualizowane wytyczne dotyczące zgłaszania przeglądów systematycznych. Int. J. Surg. 2021 , 372 , n71. [ Google Scholar ] [ CrossRef ]
- Smith, AE; Humphreys, MS Ocena nienadzorowanego mapowania semantycznego języka naturalnego za pomocą mapowania koncepcji Leximancer. Zachowanie Rez. Metody 2006 , 38 , 262–279. [ Google Scholar ] [ CrossRef ][ Wersja zielona ]
- Kotsiantis S.; Pierrakeas, C.; Pintelas, P. Przewidywanie wyników uczniów w nauczaniu na odległość przy użyciu technik uczenia maszynowego. Aplikacja Artif. Intel. 2004 , 18 , 411–426. [ Google Scholar ] [ CrossRef ]
- Lykourentzou, I.; Giannoukos, I.; Nikolopoulos, V.; Mpardis, G.; Loumos, V. Przewidywanie rezygnacji z kursów e-learningowych poprzez połączenie technik uczenia maszynowego. Oblicz. Eduk. 2009 , 53 , 950–965. [ Google Scholar ] [ CrossRef ]
- Tan, M.; Shao, P. Przewidywanie odpadu ucznia w programie e-Learning z wykorzystaniem metody uczenia maszynowego. Int. J. Emerg. Techno. Uczyć się. 2015 , 10 , 11–17. [ Google Scholar ] [ CrossRef ]
- Wang, C. Rozpoznawanie emocji związane z zaangażowaniem studentów w naukę online w oparciu o głębokie uczenie się. Int. J. Emerg. Techno. Uczyć się. 2022 , 17 , 110–122. [ Google Scholar ] [ CrossRef ]
- Ganidisastra, AHS; Bandung, Y. Przyrostowe szkolenie w zakresie głębokiego uczenia się rozpoznawania twarzy dla M-Learning Online Exam Proctoring. W Proceedings of the IEEE Asia Pacific Conference on Wireless and Mobile (APWiMob), Bandung, Indonezja, 8–10 kwietnia 2021 r. [ Google Scholar ] [ CrossRef ]
- Feng, X.; Wei, Y.; Pan, X .; Qiu, L.; Ma, Y. Akademicka metoda klasyfikacji i rozpoznawania emocji w środowisku uczenia się online na dużą skalę — oparta na metodzie głębokiego uczenia A-CNN i LSTM-ATT. Int. J. Środowisko. Rez. Zdrowie publiczne 2020 , 17 , 1941. [ Google Scholar ] [ CrossRef ] [ PubMed ][ Green Version ]
- Wang, X.; Zhang, L.; On, T. Uczenie się spersonalizowanych informacji zwrotnych opartych na przewidywaniach wydajności w uczeniu się online za pośrednictwem uczenia maszynowego. Zrównoważony rozwój 2022 , 14 , 7654. [ Google Scholar ] [ CrossRef ]
- Luo, Y.; Han, X.; Zhang, C. Przewidywanie efektów uczenia się za pomocą algorytmu uczenia maszynowego na podstawie danych dotyczących zachowań podczas uczenia się online na kursach mieszanych. Azja Pac. Eduk. Obj. 2022 , 1–19. [ Google Scholar ] [ CrossRef ]
- Park, HS; Yoo, SJ Przewidywanie wczesnego odpadnięcia w uczeniu się online na uniwersytecie przy użyciu uczenia maszynowego. Int. J. Poinformuj. Vis. 2021 , 5 , 347–353. [ Google Scholar ] [ CrossRef ]
- Srisa-An, C.; Yongsiriwit, K. Zastosowanie uczenia maszynowego i sztucznej inteligencji do samodzielnego, spersonalizowanego uczenia się online. W systemach rozmytych i eksploracji danych ; Tallón-Ballesteros, AJ, wyd.; IOS Press: Amsterdam, Holandia, 2019; Tom 5, s. 137–145. [ Google Scholar ]
- Chetyrbok, PV; Szostak, mgr; Alimova, LU Adaptacyjne uczenie się z wykorzystaniem sztucznej inteligencji w edukacji na odległość. W Proceedings of the Distance Learning Technologies, Jałta, Krym, 16–21 września 2021 r. [ Google Scholar ]
- Adnan, M.; AlSaeed, DH; Al-Baity, HH; Rehman, A. Wykorzystanie mocy techniki głębokiego uczenia się do stworzenia inteligentnego, kontekstowego i adaptacyjnego modelu m-learningu. Złożoność 2021 , 2021 , 5519769. [ Google Scholar ] [ CrossRef ]
- IEDMS. Eksploracja danych edukacyjnych. Dostępne online: https://educationaldatamining.org/ (dostęp: 27 grudnia 2022 r.).
- Rodrigues, MW; Isotani, S.; Zárate, LE Eksploracja danych edukacyjnych: przegląd procesu ewaluacji w e-learningu. Telemat. Poinformować. 2018 , 35 , 1701–1717. [ Google Scholar ] [ CrossRef ]
- Mohamad, SK; Tasir, Z. Eksploracja danych edukacyjnych: przegląd. Procedia Soc. Zachowanie nauka 2013 , 97 , 320–324. [ Google Scholar ] [ CrossRef ][ Wersja zielona ]
- Romero, C.; Ventura, S. Edukacyjna eksploracja danych: przegląd stanu techniki. IEEE Trans. Syst. Człowiek Cybern. C. Zał. Obj. 2010 , 40 , 601–618. [ Google Scholar ] [ CrossRef ]
- Dutt, A.; Ismail, MA; Herawan, T. Systematyczny przegląd eksploracji danych edukacyjnych. Dostęp IEEE 2017 , 5 , 15991–16005. [ Google Scholar ] [ CrossRef ]
- Romero, C.; Ventura, S. Eksploracja danych edukacyjnych i analityka uczenia się: zaktualizowana ankieta. WIRE 2021 , 10 , 1–21. [ Google Scholar ] [ CrossRef ]
- Bozkurt, A.; Sharma, RC Badanie równania analizy uczenia się: A co z carpe diem nauczania i uczenia się? Asian J. Kształcenie na odległość. 2022 , 17 , I–XIV. [ Google Scholar ] [ CrossRef ]
- Clow, D. Przegląd analityki uczenia się. Uczyć. Wysoki. Eduk. 2013 , 18 , 683–695. [ Google Scholar ] [ CrossRef ][ Wersja zielona ]
- Chatti, AM; Dyckoff, AL; Schroeder, U.; Thüs, H. Model referencyjny do analizy uczenia się. Int. J. Technol. Ulepsz. Uczyć się. 2013 , 4 , 318–331. [ Google Scholar ] [ CrossRef ]
- Salas-Pilco, SZ; Xiao, K.; Hu, X. Sztuczna inteligencja i analityka uczenia się w kształceniu nauczycieli: przegląd systematyczny. Eduk. nauka 2022 , 12 , 569. [ Google Scholar ] [ CrossRef ]
- Istenič Starčič, A. Uczenie się człowieka i analityka uczenia się w dobie sztucznej inteligencji. br. J. Eduk. Technhol. 2020 , 50 , 2974–2976. [ Google Scholar ] [ CrossRef ][ Wersja zielona ]
- Lin, CF; Tak, Y.; Zawieszony, YH; Chang, RI Eksploracja danych w celu zapewnienia spersonalizowanej ścieżki uczenia się w zakresie kreatywności: zastosowanie drzew decyzyjnych. Oblicz. Eduk. 2013 , 68 , 199–210. [ Google Scholar ] [ CrossRef ]
- Garrido, A.; Onaindia, E. Składanie obiektów edukacyjnych do spersonalizowanego uczenia się: perspektywa planowania AI. Intel IEEE. Syst. 2013 , 28 , 64–73. [ Google Scholar ] [ CrossRef ]
- Kavitha, V.; Lohani, RA Krytyczne badanie dotyczące wykorzystania sztucznej inteligencji, technologii i narzędzi e-learningowych w celu zwiększenia doświadczenia uczniów. klaster. Oblicz. 2019 , 22 , 6985–6989. [ Google Scholar ] [ CrossRef ]
- Lee, Kalifornia; Tzeng, JW; Huang, NF; Su, YS (2021). Przewidywanie wyników uczniów w masowych otwartych kursach online przy użyciu systemu głębokiego uczenia się w oparciu o zachowania związane z uczeniem się. Eduk. Techno. soc. 2021 , 24 , 130–146. [ Google Scholar ]
- Winters, TLF Educational Data Mining: Gromadzenie i analiza macierzy wyników do oceny opartej na wynikach. doktorat Teza, Uniwersytet Kalifornijski, Riverside, Kalifornia, USA, czerwiec 2006 r. (nr zamówienia 3226576). Dostępne online: https://www.proquest.com/dissertations-theses/educational-data-mining-collection-analysis-score/docview/305352728/se-2 (dostęp: 23 lutego 2023 r.).
- Prinsloo, P. Uciekając przed potworem Frankensteina i spotykając po drodze Kafkę: Algorytmiczne podejmowanie decyzji w szkolnictwie wyższym. e-learning. 2017 , 14 , 138–163. [ Google Scholar ] [ CrossRef ]
- Noble, SU Algorytmy ucisku: jak wyszukiwarki wzmacniają rasizm ; New York University Press: Nowy Jork, NY, USA, 2018. [ Google Scholar ] [ CrossRef ]
- Zembylas, M. Dekolonialne podejście do sztucznej inteligencji w nauczaniu i uczeniu się w szkolnictwie wyższym: strategie odwracania etyki cyfrowego neokolonializmu. Uczyć się. Technologia mediów. 2021 , 48 , 25–37. [ Google Scholar ] [ CrossRef ]
- Gudivada, V.; Apon, A.; Ding, J. Zagadnienia dotyczące jakości danych dla dużych zbiorów danych i uczenia maszynowego: wykraczanie poza czyszczenie i transformacje danych. Int. J. adw. Miękki. 2017 , 10 , 1–20. [ Google Scholar ]
- Xiao, J.; Wang, M.; Jiang, B.; Li, J. Spersonalizowany system rekomendacji z algorytmem kombinacyjnym do nauki online. J. Ambient Intel. Humanizuj. Oblicz. 2018 , 9 , 667–677. [ Google Scholar ] [ CrossRef ]
- Herlocker, JL; Konstanty, JA; Terveen, LG; Riedl, JT Ocena współpracujących systemów rekomendujących filtrowanie. ACM Trans. Inf. Syst. 2004 , 22 , 5–53. [ Google Scholar ] [ CrossRef ]
- Klašnja-Milićević, A.; Ivanović, M.; Nanopoulos, A. Systemy rekomendacyjne w środowiskach e-learningowych: przegląd najnowocześniejszych i możliwych rozszerzeń. Artif. Intel. Rev. 2015 , 44 , 571–604. [ Google Scholar ] [ CrossRef ]
Zastrzeżenie/Uwaga wydawcy: Oświadczenia, opinie i dane zawarte we wszystkich publikacjach należą wyłącznie do poszczególnych autorów i współautorów, a nie do MDPI i/lub redaktorów. MDPI i/lub redaktorzy zrzekają się odpowiedzialności za jakiekolwiek obrażenia osób lub mienia wynikające z pomysłów, metod, instrukcji lub produktów, do których odnosi się treść.
|
Wykorzystanie sztucznej inteligencji (AI) w procesach uczenia się online i edukacji na odległość: systematyczny przegląd badań empirycznych
Udostępnij i cytuj
Dogan, ja; Goru Dogan, T.; Bozkurt, A. Wykorzystanie sztucznej inteligencji (AI) w procesach uczenia się online i edukacji na odległość: systematyczny przegląd badań empirycznych. Aplikacja nauka 2023 , 13 , 3056. https://doi.org/10.3390/app13053056
Link do artykułu: https://www.mdpi.com/2076-3417/13/5/3056
Obraz wyróżniający: Plik: Uzupełnienie monitu o sztuczną inteligencję przez dalle mini.jpg. Z Wikimedia Commons, repozytorium wolnych multimediów