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A B S T R A C T

Human endeavors exert profound influences on the storage of carbon and the net primary productivity (NPP) of
land, particularly in the environmentally sensitive arid territories. The Taklimakan Desert, known as the second
largest migratory desert on Earth, necessitates an examination of the effects of the desert thoroughfare and its
adjoining ecological windbreaks on carbon sequestration. This inquiry employed a myriad of data sources and
harnessed the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST), Carnegie-Ames-Stanford
Approach (CASA), and Patch-level Land Use Simulation Model (PLUS) methodologies to delve into the spatial
and temporal metamorphosis and future outlook of the Taklimakan Desert in China over the past three decades.
The findings reveal that grasslands serve as the preeminent carbon reservoir in the Taklimakan Desert, wit-
nessing a surge of 16.31 tons over the previous 30 years. Of particular note, the ecological windbreaks encircling
the desert highway have bolstered carbon storage by an added 0.15 tons from the completion of the road in 1996
to 2020. Moreover, following the establishment of the ecological windbreak in 2005, there has been a notable
upsurge in the values of net primary productivity (NPP) within this locality. Looking towards the future, various
prospective scenarios, especially those centered on ecological conservation, underscore an escalating carbon
sequestration effect in the Taklimakan Desert. Concurrently, there is an augmentation in carbon retention linked
to the desert thoroughfare. The prognostications of maximum, minimum, and mean NPP values from 2030 to
2100 exhibit substantial oscillations, delineating the intricate interplay between climatic shifts and human en-
deavors in shaping regional NPP. In sum, these revelations intimate that well-designed human undertakings have
engendered an expansion of verdant domains within the desert, ultimately benefiting carbon capture in these
parched terrains.

1. Introduction

In the ethereal realm of terrestrial ecosystems, the process of carbon
sequestration assumes a paramount role in governing the emission of
greenhouse gases, notably carbon dioxide, into the ethereal expanse and

in mitigating the ramifications of planetary climate metamorphosis
(Piao et al., 2018). Against the backdrop of the strategic imperatives
concerning the achievement of a “carbon peak” and the realization of
“carbon neutrality”, the intensification of inquiries into carbon seques-
tration within terrestrial ecosystems bears profound implications for the
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global carbon vortex and the sustainable progression of ecosystems
(Dabu and Xiaoxin, 2021; Dai Er et al., 2016; Solomon et al., 2013; Van
Pham et al., 2023; Vendrame et al., 2018; Wei et al., 2011).

In contemporary times, a multitude of distinguished scholars, both
nationally and internationally, have delved into the intricate realm of
carbon sequestration and net primary productivity (NPP). While their
investigations into carbon storage vary in scope, they can be categorized
into three principal avenues: studies on the estimation of carbon storage,
research on methods for estimating carbon storage, and inquiries into
the spatiotemporal evolution mechanisms and influential factors
shaping carbon storage (Shuchao et al., 2023; Verma et al., 2024; Xuejie
et al., 2022; Yang et al., 2016; Yang Yuping and Wenmin, 2023; Zafar
et al., 2024; Zhang et al., 2020; Zhang et al., 2023; Zhao et al., 2018). In
the dawn of the 21st century, with the continuous enrichment of remote
sensing observation data sensitive to land cover information and the
rapid evolution of remote sensing processing technology(Zafar et al.,
2023), a new era of land NPP estimation models has emerged. These
models, which integrate remote sensing data, offer distinct advantages
in capturing spatiotemporal heterogeneity. The recent advent of multi-
scale and multi-resolution remote sensing data has further advanced
our ability to quantify the intricate spatiotemporal characteristics of
model parameters (Changqiao et al., 2017). Chen et al. (2022) con-
ducted a study utilizing the sophisticated GeoSOS FLUS model to
simulate the intricate spatial configuration of land use in the Daxing
District. Shengtao et al. (2022) meticulously refined the conventional
CASA model utilizing data sourced from the China Ecosystem Research
Network (CERN).

These groundbreaking studies not only deepen our comprehension of
ecosystem carbon cycling but also establish a scientific basis for
addressing climate change and devising prudent land management and
forest protection policies. With advancements in remote sensing tech-
nology and sophisticated model simulation techniques, forthcoming
investigations are poised to achieve heightened precision and compre-
hensiveness. Deserts, as a crucial component of terrestrial ecosystems,
are widely dispersed across global land, encompassing a total area of
approximately 7 million square kilometers, constituting one-fourth of
the Earth’s land mass. In recent years, the issue of desertification has
become increasingly salient amidst the escalating impacts of global
climate change. China has sequentially implemented a series of national
key ecological initiatives, such as the management of sand sources in the
Beijing-Tianjin region, the conversion of farmlands into forests and
grasslands, the Three-North Shelter Forest Program, and the holistic
treatment of rocky desertification, facilitating a transformative shift
from “encroaching sands and fleeing populations” to “advancing
greenery and receding sands” (Fang et al., 2019; Mammitin, 2015; Wang
and Huang, 2020; Zhang et al., 2009). The afforestation project aimed at
carbon sequestration in the Kubuqi Desert region has effectively miti-
gated wind and sand hazards, enhanced the local ecological milieu, and
accelerated both ecological development and the progression towards
an ecological civilization (Qiao, 2022). It is evident that in the past,
emphasis was predominantly placed on the outcomes of wind control,
sand stabilization, microclimate amelioration, and economic enrich-
ment following desertification mitigation, while the potential benefits of
carbon sequestration were long overlooked (Ma et al., 2021; Yang et al.,
2016).

The nexus between carbon sequestration in man-made shelterbelts in
arid regions and NPP holds profound ecological and environmental
management ramifications. In desert locales, plant proliferation is con-
strained by the availability of water and nutrients. Nevertheless, artifi-
cial shelterbelts have the capability to augment NPP in these regions
through the introduction of drought-tolerant plant species and the
implementation of efficient soil and water conservation practices. There
exists a positive correlation between NPP and carbon sequestration;
while NPP can serve as a rough indicator of carbon fixation rates, carbon
storage embodies a protracted accumulation process with potential
temporal lags between the two variables (Dan et al., 2023).The

ecological endeavor of establishing a shelter forest along the Tarim
Desert Highway stands as the longest desert shelter forest traversing a
shifting desert worldwide, embodying a quintessential epitome of arti-
ficial desert ecosystems. Spanning approximately 446 km in length and
72 to 78 m in width, this shelterbelt serves as a protective shield for the
desert highway. Through an exclusive focus on the shelter forest along
the Taklimakan Desert Highway, this study delved into the carbon
sequestration and spatio-temporal evolution characteristics of the
Taklimakan Desert from 1990 to 2020 utilizing the InVEST model,
alongside assessing the spatio-temporal evolution pattern of the NPP of
the Taklimakan Desert employing the CASA model. Subsequently,
through the utilization of land use type data, projections were made
concerning the carbon sequestration and NPP of the Taklimakan Desert
over the ensuing three decades.Through the aforementioned research
endeavors, the influence of erecting artificial shelter forests in deserts on
the intrinsic carbon sequestration capability of the desert was scruti-
nized, furnishing a scientific underpinning for the governance and
advancement of desert ecosystems in response to climate fluctuations,
while aspiring to provide a blueprint for the sustainable advancement
and governance of desert ecosystems.

2. Materials and methods

2.1. Study area

The Taklimakan Desert, located within the coordinates of 36◦50′ to
41◦10′ N and 77◦40′ to 88◦20′ E, nestles at the core of the Tarim Basin,
embraced by the grand Tianshan Mountains in the north and the
formidable Kunlun Mountains in the south. Revered as the largest
wandering desert in China and the second largest globally, it stretches
across an impressive expanse of approximately 33.76 × 104 km2.
Residing within a temperate climate zone, it boasts an average annual
temperature of 9–11 ◦C, a yearly precipitation rate of 11.05 mm, and an
evaporation rate averaging at 3638.6 mm annually (Song et al., 2022).

The soil makeup is predominantly comprised of sandy particles,
while flora is a scarce sight, restricted to species such as tamarisk, camel
thorn, and thistle that somehow endure an existence in the sand dune
valleys and on the peripheries of this hostile terrain. Encircling the
desert are patches of verdant greenery, referred to as “sand sea green
islands,” teeming with abundant populations of Populus euphratica
forests and tamarisk, as well as “green corridors” flanking the Hotan
Riverbanks, vibrant with reeds and Populus euphratica flourishing.

Despite the formidable and inhospitable characteristics of the
Taklimakan Desert, numerous crucial oases punctuate its periphery,
strategically situated to harness the resources of local rivers and un-
derground aquifers for sustenance. Prominent among these verdant
sanctuaries are the Kashgar Oasis, Hotan Oasis, Korla Oasis, and Aksu
Oasis, providing a refreshing contrast to the harsh desolation of their
arid environs. The Taklimakan Desert boasts a network of meticulously
engineered desert thoroughfares, notably including the Tarim Desert
Road, completed with great care in 1995, extending over an impressive
total length of 552 km. This road elegantly connects Korla City and
Minfeng County, securing its place as the world’s longest route cutting
through undulating desert terrain. Another notable desert highway,
stretching from Tazhong to Ruoqiang County, spans a grand distance of
436 km and was masterfully established in 2007. This road gracefully
links the Tazhong Oilfield nestled deep within the heart of the Takli-
makan Desert with Ruoqiang County. To combat the erosive forces of
frequent sandstorms, imposing sand barriers and intricately designed
grass grid sand barriers have been thoughtfully erected along the length
of the highway. Moreover, hardy drought-resistant shrubs and lush
herbaceous vegetation such as willow and poplar have been tenderly
planted, forming a protective green embrace around the landscape. The
Tarim Desert Highway features a standard roadbed width of approxi-
mately 11 m, with lane widths of 9 m and sturdy 1-m-wide shoulders on
either side. The expanse of the verdant buffer zone adjusts according to
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the topography and desert conditions, typically ranging from 50 to 100
m.

2.2. Datasets

The essential data required for this study encompasses the geospatial
delimitations of provinces (Xu and Yang, 2022), the patterns and char-
acteristics of land use (Jie et al., 2021), socio-economic indicators (Xu
and Yang, 2022), climatic attributes (Musheng et al., 2018), and topo-
graphical features (Table 1). The boundaries defining administrative
divisions are represented in vector format. (See Fig. 1.)

The analysis of land use dynamics and the consequent assessment of
carbon sequestration capacity in response to these changes predomi-
nantly hinge upon data sourced from the China Land Cover Dataset
(CLCD) meticulously curated by the esteemed team spearheaded by
Professor Yang Jie and Professor Huang Xin at Wuhan University. This
dataset, extracted from Landsat imagery accessible via the Google Earth
Engine platform, encompasses a diverse array of 9 distinctive land cover
classifications: arable expanses, sylvan realms, verdant shrubbery, pas-
toral grasslands, aqueous bodies, glacial ice and snowscapes, barren
desolation, impermeable urban surfaces, and aqueous marshlands. For
the purposes of this scholarly inquiry, land cover information spanning
the years 1990, 2000, 2010, and 2020 was fastidiously curated and
subsequently distilled into 6 overarching land cover categories: culti-
vated lands, forested domains, grassy expanses, aquatic enclaves, ur-
banized precincts, and fallow or untended terrains.

The data regarding drivers of change is harnessed to model the
imminent shifts in land use. In this sphere, socio-economic influencers
include indicators such as Gross Domestic Product (GDP), demographic
figures, and spatial factors like proximity to urban hubs, transportation
arteries, water bodies, and nodes of connectivity. Geospatial informa-
tion encompasses digital elevation models (DEMs), slope characteristics,
and aspect data, with a resolution down to 30 m.

Meteorological and ecological factors, including annual precipita-
tion levels, temperature metrics, and soil composition data, have a
profound impact on the environment. Precipitation and temperature
data are crucial for accurately determining carbon density coefficients.
Additionally, soil composition data is instrumental in predicting future

land use trends.
Considering the fluctuations in spatial resolution of the aforemen-

tioned datasets and the vastness of the study region, we will standardize
all data to a spatial resolution of 30 m.

2.3. Data processing methods

2.3.1. InVEST model
The InVEST model is applied for the spatialization and visualization

of ecological service functions and economic values under different land
cover scenarios. This study utilizes the carbon sequestration model in
terrestrial ecosystems, calculating regional total carbon storage by
multiplying four carbon reservoirs with various land use categories and
aggregating the outcomes. The formula for calculation is as follows:

Ci = Cabove +Cbelow +Csoil +Cdead (1)

Ctotal =
∑n

i=1
Ci × Si (2)

Where Ci is the total carbon density contained in the land use type
(t⋅hm− 2); Cabove、Cbelow、Csoil、Cdead are respectively the above-ground
carbon density, below-ground carbon density, soil carbon density, and
dead organic matter carbon density (t⋅hm− 2);Ctotal is the total carbon
storage of the ecosystem (t); Si is the area (hm2) of land use type i; n is the
number of land use types.

The information regarding the carbon density distribution among
diverse land utilization classifications predominantly originates from
the National Ecological Data Center Resource Sharing Service Platform
(http://www.nesdc.org.cn/). Discrepancies may arise between the car-
bon density data associated with different land usage categories and the
gathered dataset.A notable, positive correlation has been detected be-
tween biomass, soil organic carbon density, and precipitation, while a
negative correlation is apparent with temperature. A sophisticated
strategy that capitalizes on the intricate relationship between tempera-
ture and precipitation data to refine the initial carbon density statistics
has been widely embraced in arid regions. Consequently, this method-
ology is implemented to refine the carbon density metrics concerning
various land use categories within the research domain, ultimately
providing accurate carbon density values for the study area (refer to
Table 2). The specific procedural details are outlined as follows:

Csp = 3.3968×MAP+3996.1 (3)

CBP = 6.798× e0.0054×MAP (4)

CBT = 28×MAT+398 (5)

KBP =
C’
BP

C˝
BP

KBT =
C’
BT

C˝
BT

(6)

KB =
KBP

KBT
Ks =

C’
SP

C˝
SP

(7)

Where Csp is the soil carbon density corrected for annual precipita-
tion; CBp is the biomass carbon density adjusted for annual precipitation;
CBT is the biomass carbon density adjusted for annual average temper-
ature;MAP is the annual average precipitation (mm);MAT is the annual
average temperature (◦C). KBP is the biomass carbon density precipita-
tion correction coefficient; KBT is the temperature correction coefficient
for biomass carbon density; KB is the biomass carbon density correction
factor; KS is the soil carbon density correction factor; C′ and C″ respec-
tively represent the carbon density data of the Taklimakan Desert and
the whole country.

2.3.2. CASA model
The net primary productivity (NPP) of vegetation epitomizes the

Table 1
Data Types and Sources.

Types Data Resolution
ratio

Data sources

Provincial
administrative
boundaries

Boundary of
research area vector data

Resource and
Environmental Science

and Data Center of Chinese
Academy of Sciences
(https://www.resdc.cn)

Land use data CLCD 30 m
Wuhan University (doi:
https://doi.org/10.

5281/zenodo.5816591)

Socioeconomic
factors

GDP 1 km Resource and
Environmental Science

and Data Center of Chinese
Academy of Sciences
(https://www.resdc.cn)

population 1 km

city vector data
OpenStreetMap

(https://www.openstree
tmap.org/)

road vector data
water area vector data
station vector data

Climate and
environmental

factors

precipitation 1 km Resource and
Environmental Science

and Data Center of Chinese
Academy of Sciences
(https://www.resdc.cn)

temperature 1 km

soil 1 km

terrain data
DEM 30 m

Geospatial Data Cloud(htt
p://www.gscloud.cn)

slope 30 m
Obtained based on ArcGIS

aspect 30 m
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cumulative organic matter amassed by verdant flora per unit area and
time. Three classifications of models are employed to approximate NPP:
statistical, parameter, and process-oriented. In this exploration, the
esteemed CASA model (Xu and Yang, 2022), which computes NPP
predicated on luminous energy utilization proficiency, was utilized. This
model is notably well-suited for evaluating NPP on a regional scale.The
requisite data inputs for the CASA model encompass temperature and
precipitation records procured from the esteemed National Meteoro-
logical Science Data Center (https://data.cma.cn/), solar radiation sta-
tistics also acquired from the National Meteorological Science Data
Center (https://data.cma.cn/), NDVI information extrapolated from the
monthly peak composite NDVI product in China spanning from 1982 to
2020, and land and vegetation categorization details sourced from
NASA’s MCD12Q1 V006 dataset (https://modis.gsfc.nasa.gov/data/
dataprod/mod12.php). This study leveraged USGS Landsat 9 Level 2
Collection 2 Tier 1 remote sensing imagery data and implemented the
random forest technique for land classification, achieving a commend-
able overall accuracy quotient of 0.9. Furthermore, the CASA model was
engaged in this examination to conduct minute-scale NPP simulations
along the desert thoroughfares in southern Xinjiang, and meticulous
land utilization categorization was orchestrated utilizing the sophisti-
cated Google Earth Engine (GEE).The CASA model predominantly as-
sesses the NPP of local foliage by taking into account two pivotal
elements: the photosynthetically active radiation (APAR) absorbed by
plants and the genuine luminous energy utilization efficiency (ε). The
computational formula is delineated as follows:

APAR(x, t) = SOL(x, t)× FPAR(x, t)×0.5 (8)

Where SOL(x,t) is the total solar radiation at position x at time t
(MJ⋅m− 2⋅month− 1); FPAR(x,t)refers to the proportion of vegetation’s
absorption of incident photosynthetically active radiation (PAR); 0.5
represents the proportion of solar effective radiation that vegetation can

utilize to the total radiation.
The degree of solar radiation absorbed by vegetation is intricately

linked to both the density of vegetative coverage and the unique
botanical composition. Potter et al. proposed that the normalized
vegetation index (NDVI), extracted from satellite-derived data, presents
a dependable portrayal of vegetative canopy status, outlined in the
subsequent equation:

FPAR(x, t) =
FPAR(x, t)NDVI + FPAR(x, t)SR

2
(9)

FPAR(x, t)NDVI =
(
NDVI(x, t) − NDVi,min

)

(
NDVIi,mux − NDVIi,min

)×FPARmax − FPARmin

)

+FPARmin

(10)

FPAR(x, t)SR =

(
SR(x, t) − SRi,min

)

(
SRi,max − SRi,min

) ×(FPARmax − FPARmin)+ FPARmin

(11)

Where the values of SRi and min are 1.08, and the range of SRi and
max is 4.14–6.17, Obtain SR (x, t):

SR(x, t) =
[1+ NDVI(x, t) ]
[1 − NDVI(x, t) ]

(12)

2.3.3. PLUS model
The advanced model, referred to as the PLUS model, is deeply rooted

in the delineation of established land typologies and utilizes raster data
to forecast alterations at the patch level in land usage. This intricate
model identifies instances of mutual transformations among varied
classifications within land use datasets, subsequently producing fore-
casts of land utilization based on transition probabilities. The applica-
tion of the random forest algorithm enables the calculation of expansion
patterns and the identification of driving forces influencing each land
category, thus providing insights into the growth potential of individual
land classes and the impact exerted by diverse factors. Building upon the
2020 land use dataset as its fundamental basis, this study integrates a
spectrum of distinct driving factors to simulate and predict changes in
land use patterns up to the year 2050.

In the contemplation of future land utilization typology, three
distinct narratives are intricately delineated: the organic progression,
the conservation of ecology, and the advancement towards sustain-
ability. The organic progression narrative serves as the fundamental
storyline, wherein the gradual unfolding of natural development aligns
with historical precedent, shaping the envisioned landscape

Fig. 1. Overview of the research area. (a) Xinjiang, China; (b) Taklimakan Desert; (c) Desert Highway.

Table 2
Carbon Density of Different Land Use Types in the Taklimakan Desert (Revised).

land-use
type

Above-ground
carbon
density

Below-ground
carbon
density

Soil carbon
density
(0–100 cm)

Dead organic
carbon
density

Farmland 2.01 3.28 28.33 0
Forest 23.28 5.77 50.54 0

Grassland 0.44 3.56 38.24 0
Water 0.41 0.26 0 0
Built-up 0 0.17 34.06 0
Unused 0.29 0.24 0.69 0
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configuration at a measured pace. Conversely, the conservation of
ecology narrative advocates for the strengthening of ecological habitats,
imposing rigorous constraints on the transformation of wooded areas
into alternative land uses, while allowing the conversion of grasslands
solely into lush woodlands. The narrative of advancement towards
sustainability highlights the intricate balance between economic prog-
ress and environmental protection, prescribing limits on the conversion
of cultivable lands, woodlands, and aquatic realms.The detailed depic-
tion of the financial implications of land use conversions across these
multifaceted narratives is elegantly presented in Table 3, where a binary
system of 1 indicating permissible conversions and 0 representing
impermissible alterations is meticulously evaluated. (See Table 4.)

The evaluation of the PLUS model’s simulation performance was
conducted by measuring two metrics: overall accuracy (OA) and Kappa
coefficient. The Kappa coefficient was computed according to the
following formula:

Kappa =
po − pc
pp − pc

(13)

where Kappa is the simulation accuracy index, Po is the actual simula-
tion accuracy, Pc is the expected simulation accuracy under random
conditions, and Pp is the simulation accuracy under ideal conditions.
Generally, when the Kappa value is greater than 0.75, the simulation
accuracy is high; a value between 0.4 and 0.75 means that the simula-
tion accuracy is moderate; and when it is less than 0.4, the simulation
accuracy is poor. The Kappa coefficient of the simulation accuracy in
this study was 0.80, the OA was 0.92, and the simulation results met the
research requirements.

2.3.4. Accuracy verification
As a result of the complexities involved in gathering observational

data in the Southern Xinjiang region, this study conducted a compara-
tive validation utilizing the NPP estimates derived from the Carnegie
Ames Stanford Approach (CASA) model and the Moderate Resolution
Imaging Spectroradiometer (MODIS). By randomly selecting 60 data
points from each year’s simulation results, a total of 240 valid data
points were obtained. As depicted in Fig. 2, the precision validation
results demonstrate an R2 value of 0.698, indicating a strong correlation
between the two datasets, thereby confirming the enhanced reliability of
the NPP results simulated in this investigation.

3. Results

3.1. Land use transformation in the Taklimakan Desert over the previous
three decade

The depiction in Fig. 3 unveils that throughout the past thirty years,
the prevailing land utilization patterns within the Taklimakan Desert
have predominantly been desolate, encompassing roughly 88 % of the
total land area under scrutiny. Subsequent to barren lands, grasslands,

Table 3
Cost matrix of land use conversion in multi-scenario simulation.

Land use scenario Type Farmland Forest Grassland Water Built-up Unused

Natural development scenario

Farmland 1 1 1 1 1 1
Forest 1 1 1 1 1 1

Grassland 1 1 1 1 1 1
Water 1 1 1 1 1 1
Built-up 1 1 1 1 1 1
Unused 1 1 1 1 1 1

Ecological protection scenario

Farmland 1 1 1 1 1 0
Forest 0 1 0 0 0 0

Grassland 0 1 1 0 0 0
Water 0 0 0 1 0 0
Built-up 1 1 1 1 1 0
Unused 1 1 1 1 0 1

Sustainable development scenario

Farmland 1 0 0 0 1 0
Forest 0 1 0 0 0 0

Grassland 1 1 1 1 1 0
Water 0 0 0 1 0 0
Built-up 0 1 1 1 1 0
Unused 1 1 1 1 1 1

Table 4
Land Use Type Area of Taklimakan Desert from 1990 to 2020.

Land-use type Area/km2

1990 2000 2010 2020

Farmland 2722.22 3277.12 4693.11 5794.81
Forest 3209.49 3269.68 3269.04 3239.29

Grassland 51,066.43 47,147.23 32,357.72 31,634.85
Water 1498.51 2021.97 1450.85 1485.29
Built-up 438.73 295.76 199.05 297.62
Unused 290,555.39 293,479.31 307,521.73 307,039.43

Fig. 2. Comparative Accuracy Validation of CASA NPP and MODIS NPP from
2000 to 2020.

A. Mamtimin et al.
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farmlands, forests, water bodies, and urban areas constitute the rest of
the scenery. Significantly, the allocation of wooded regions varies be-
tween the two zones, with forests mainly clustered along the southern
and northern peripheries of the Taklimakan Desert, as well as in the
proximity of the desert highway. (See Fig. 4.)

Moreover, a scrutiny of the evolutionary trends in the spatial and
temporal distribution patterns of land utilization unveils captivating
revelations. Particularly, the Taklimakan Desert experienced a remark-
able upsurge in cultivable land extent from 1990 to 2020, marking a
substantial enlargement of 3072.59 km2. The most notable escalation
transpired between 2000 and 2010, encompassing roughly 46 % of the
collective expansion in arable land. Closely trailing behind is the
amplification in wooded regions, amounting to 29.8 km2.

Fascinatingly, the course of land apportionment for developmental
endeavors unveils an undulating trajectory, initially marking a descent
of 239.68 km2 from 1990 to 2010, succeeded by an escalation of 98.57
km2 from 2010 to 2020. Concerning aqueous expanses, their kinetics
manifest a rhythmic sequence of augmentation, diminution, and

subsequent augmentation once more. Notably, the epoch spanning from
1900 to 2000 witnessed an increment of 523.46 km2, counteracted by a
downturn of 571.12 km2 between 2000 and 2010, only to revive with an
augmentation of 34.44 km2 between 2010 and 2020.

In sharp juxtaposition, grasslands are undergoing an enduring
decrease, with a significant diminishing of 19,431.6 km2 from 1990 to
2020. On the contrary, wastelands are on an ascending path, observing
ceaseless expansion totaling 16,484.04 km2 between 1990 and 2020.

3.2. Spatial and temporal fluctuations in carbon storage in the
Taklimakan Desert from 1990 to 2020 utilizing the InVEST model

The assessment of carbon sequestration in the Taklimakan Desert
ecosystem using the InVEST model spanning from 1990 to 2020 unveils
a consistently ascending trajectory since the inception of observations
(See Figs. 5, 6). Of particular note is the pinnacle of carbon storage
reached in 2020, standing at an impressive 133.33 tons, with 2010 in
close pursuit at 129.9 tons, and 2000 trailing at 123.49 tons. The initial
measurement in 1990 documented the most modest figure of 109.66
tons, indicating a notable surge of 23.67 tons over the course of three
decades. (See Fig. 7.)

The distribution of carbon sequestration among different land use
categories within the Taklimakan Desert showcases a diverse range,
from minor to significant contributions. These categories encompass
meadows, fallow lands, croplands, urban areas, woodlands, and water
bodies. Throughout the observed timeframe spanning from 1990 to
2020, the total carbon storage within the Taklimakan Desert has
consistently increased. Notably, the meadows emerge as a crucial
reservoir within the desert, experiencing a gradual rise from 58.30 tons
in 1990 to 74.61 tons in 2020, reflecting a substantial gain of 16.31 tons
over the span of three decades. In contrast, the fallow lands (deserts)
represent the second-largest carbon repository, yet undergo an annual
decrease, dropping from 40.71 tons in 1990 to 39.94 tons in 2020,
indicating a decline of 0.77 tons within the same timeframe (Table 5).
(See Table 6.)

The transformation of carbon sequestration across diverse land use
categories experiences subtle fluctuations over distinct epochs.
Throughout the observational period spanning from 1990 to 2020,
carbon sequestration within grasslands, cultivated lands, and urban
areas demonstrates an upward trajectory, while undeveloped territories
show a slight decrease. Cultivated lands have surged from 10.57 tons in

Fig. 3. Spatial and Temporal Distribution in Land Use in the Taklimakan Desert from 1990 to 2020.

Fig. 4. Sankey Map of Land Use Changes in the Taklimakan Desert from 1990
to 2020.
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1990 to 17.75 tons in 2020, displaying a consistent upward trend;
simultaneously, grasslands have experienced substantial growth from
58.3 tons in 1990 to 74.61 tons in 2020, resulting in a net increase of
16.31 tons over three decades. Of particular note is their dominance,
comprising 55.96 % of the total carbon sequestration in the Taklimakan
Desert. Forested landscapes and aquatic expanses remain relatively
stable; in contrast, undeveloped lands have seen a decline from 40.71
tons in 1990 to 39.94 tons in 2020, indicating a marginal decrease of
0.77 tons over the past 30 years, yet maintaining a significant 29.96 %
share of the overall carbon sequestration.

Moreover, the carbon sequestration within the lands utilized by
desert highways remains relatively low. From 1990 to 2020, the carbon
storage in cultivated lands, grasslands, and urban areas showed an
increasing trend, while the unused lands saw a decrease. After the
construction of the desert highway, carbon storage increased from 0.66
tons in 2000 to 0.71 tons in 2020, representing an improvement of 0.16
tons over almost two decades. The building of desert highways has led to
a reduction in unused lands (deserts), resulting in a decrease in carbon
storage from 0.193 tons in 2000 to 0.183 tons in 2020, indicating a
decrease of 0.01 tons over approximately two decades. Therefore,

Fig. 5. Current Status of Carbon Storage in the Taklimakan Desert from 1990 to 2020.

Fig. 6. Changes in Carbon Storage in the Taklimakan Desert from 1990 to 2020.
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following the completion of the desert highway in 1996, the ecological
shelterbelts near the desert highway have increased their carbon storage
by 0.15 tons by 2020.

From a spatial distribution perspective, the Taklimakan Desert

showcases significant variability in carbon storage levels, with height-
ened concentrations primarily located in the southern, southeastern,
southwestern, and northeastern sectors, while lower concentrations are
evident in the central and northern regions. Spatial variation analysis
unveils distinct zones within the desert ecosystem: a zone emitting
carbon, a zone of balance, and a zone absorbing carbon. The zone of
balance, characterized by values ranging from − 0.1 to 0.1 metric tons,
denotes areas where carbon storage remains relatively stable. Fig. 6
demonstrates that carbon storage levels remained largely constant
across most regions from 1990 to 2020, indicating a state of equilibrium.
Nevertheless, between 2000 and 2020, there was a noticeable surge in
carbon absorption areas, particularly in the southern, southeastern, and
southwestern regions.

3.3. Temporal and spatial fluctuations of net primary productivity in the
enigmatic Taklimakan Desert from 1990 to 2020 using the CASA model

As an indispensable ecological barrier in China, the preservation and
sustainable development of the ecological environment in the southern
region of Xinjiang have always been of paramount concern. The con-
struction of the Taklimakan Desert Highway in 1995 has had a profound
and enduring impact on the regional ecological landscape, thanks to
years of painstaking efforts in building ecological protection forests.To
delve deeper into the specific effects of ecological protection forest
construction on NPP in southern Xinjiang, this study utilized advanced
USGS Landsat 9 Level 2 Collection 2 Tier 1 remote sensing imagery data.
The random forest method was employed for land classification,
achieving an impressive overall accuracy rate of 90 %. Furthermore, the

Fig. 7. Spatial Changes of NPP in Southern Xinjiang over the Past 30 Years.

Table 5
Carbon Storage of Various Land Use Types in the Taklimakan Desert from 1990
to 2020.

LUCC Carbon storage / t

1990 2000 2010 2020

Farmland 10.57 12.16 14.81 17.75
Forest 0.01 0.01 0.01 0.01

Grassland 58.30 70.81 74.56 74.61
Water 0.01 0.01 0.01 0.01
Built-up 0.06 0.21 0.43 1.01
Unused 40.71 40.29 40.08 39.94

Table 6
Carbon Storage of Various Land Use Types in Desert Highways from 1990 to
2020.

LUCC Carbon storage / t

1990 2000 2010 2020

Farmland 0.04 0.13 0.15 0.21
Grassland 0.58 0.66 0.74 0.71
Built-up 0.0002 0.001 0.007 0.014
Unused 0.193 0.188 0.184 0.183
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CASA model was utilized in this research to conduct small-scale NPP
simulations along the desert highways in southern Xinjiang, while
refined land use classification was carried out using the sophisticated
Google Earth Engine (GEE) platform.

By closely examining the variations in NPP in the southern region of
Xinjiang, the critical role of ecological protection forests in improving
the local ecological environment has been revealed. The results of this
analysis indicate that since the completion of the highway in 1995,
especially after the establishment of ecological protection forests in
2005, there has been a significant rise in NPP in southern Xinjiang. This
suggests that the ecological protection forests along the desert highway
not only increase the vegetation cover in the area, but also enhance the
productivity and resilience of the overall ecosystem. Through contin-
uous efforts in building ecological protection forests, the ecological
landscape in southern Xinjiang has seen remarkable improvements,
providing valuable scientific foundations and practical insights for
future ecological conservation and sustainable development initiatives.

Analyzing the data covering the years 1990 to 2020 reveals a
consistent increase in the annual NPP in the southern region of Xinjiang.
Upon careful examination of the findings presented in Table 7, it be-
comes evident that following the construction of the Taklimakan Desert
Highway in 1995, there was a significant rise in the NPP levels, partic-
ularly after the establishment of the ecological protection forest in 2005.
During this period, the NPP value surged from 0.467 in 1995 to 0.825 in
2010. Although experiencing a slight decline to 0.748 in 2020, the NPP
remains substantially elevated compared to the early stages of road
development.The spatial distribution of NPP in southern Xinjiang from
1990 to 2000 exhibited a modest yet relatively uniform distribution,
indicating sparse vegetation cover and limited ecosystem productivity in
the region. From 2000 to 2010, there was a gradual increase in the NPP
levels, predominantly concentrated along the highways, underscoring
the significant impact of the ecological protection forest on the local
ecosystem. Progressing from 2010 to 2020, despite a continued upward
trend in NPP values, the growth rate slowed down, possibly due to the
reinforcement of ecological conservation measures implemented
throughout the highway corridor.

3.4. Changes in carbon storage in the Taklimakan Desert under various
future scenarios

By leveraging the land utilization data projected by the sophisticated
PLUS model and amalgamating it with the InVEST model, the compu-
tation of carbon sequestration in the Taklimakan Desert for the year
2050 across diverse scenarios – encompassing natural progression,
ecological preservation, and sustainable advancement – offers profound
insights into the prospective condition of this distinctive ecosystem
(refer to Fig.8). The spatial apportionment of carbon sequestration in
2050 exhibits a relatively congruent distribution to that of 2020,
delineating a discernible ring-shaped configuration enveloping the
north, south, southwest, and northeast sectors. The central vast expanse,
defined by its arid terrain, stands in stark contrast to the urban and rural
expansions that encircle it. Significantly, the execution of ecological
engineering endeavors, notably the establishment of ecological shel-
terbelts alongside desert thoroughfares, has engendered a substantial
augmentation in carbon sequestration within the vicinity.

Fig. 9 elegantly depicts the evolution of carbon sequestration in the
majestic expanse of the Taklimakan Desert over the temporal span from
2020 to 2050. Manifestly, a discernible ascent in the levels of carbon
storage is observed, gracefully surpassing the achievements of the pre-
ceding decade (refer to Fig. 9 for a visual representation). Within the
realm of organic progression, regions witnessing an elevation in carbon
sequestration predominantly cluster in the southwestern quadrant,
albeit accompanied by subtle undulations. Conversely, the trans-
formative influence of ecological preservation strategies manifests
palpably as carbon sequestration experiences a remarkable upsurge
when juxtaposed against both natural and sustainable developmental
scenarios. This surge can be attributed to the stringent protocols gov-
erning land utilization within ecologically safeguarded zones,
mandating the conversion of grasslands into verdant arboreal expanses.
Consequently, the proliferation of wooded domains has precipitated a
substantial augmentation in carbon sequestration capacities. Within the
paradigm of sustainable development, the incremental shifts mirror
those documented within the natural developmental framework.

3.5. Spatiotemporal dynamics of net primary productivity in the
Taklimakan Desert under various future scenarios

The NPP stands as a crucial measure in evaluating the vitality of
ecosystems, representing the total organic carbon produced by plants
through photosynthesis minus the carbon released through plant respi-
ration. Fluctuations in NPP have profound impacts on the flow of carbon
within ecosystems and the intricate web of global climate patterns. The
southern regions of Xinjiang are situated in arid and semi-arid zones,
where NPP is influenced by both natural climate variations and human
activities. Exploring the nuances of NPP in southern Xinjiang within a
forward-looking framework provides valuable insights into how eco-
systems respond to changes in climate, thus forming a solid foundation
for developing effective ecological protection measures and manage-
ment strategies. Utilizing data from the advanced CMIP6 scenario and
the respected CASA model, we conducted simulations to analyze the
trajectory of NPP in southern Xinjiang from 2030 to 2050. By examining
the maximum, minimum, and average NPP values over different time
periods, the fluctuations in NPP become evident. Table 8 outlines the
peak, lowest, and average NPP values in southern Xinjiang throughout
the period from 2030 to 2050. In the broader context, the highest NPP
values display noticeable fluctuations from year to year, while the
lowest NPP values show a degree of consistency across the entire
timeframe, with variations staying within a narrower range. At the same
time, the average NPP values exhibit a rising and falling trend, indi-
cating a favorable environment for plant growth. Adequate rainfall and
optimal temperatures contribute to increasing the efficiency of photo-
synthesis in plants, leading to higher NPP levels.The spatial distribution
of NPP in southern Xinjiang from 2030 to 2050, illustrated in Fig. 10,
reveals a certain level of uniformity with occasional fluctuations over
different time periods. Areas with higher NPP are predominantly found
in oases and along river corridors in southern Xinjiang, contrasting with
regions of lower NPP that are prevalent in dry desert expanses.

4. Discussion

4.1. Influencing factors of carbon storage in the Taklimakan Desert

This research employed the InVEST model to evaluate the spatial
allocation of carbon sequestration in the Taklimakan Desert of Xinjiang
from 1990 to 2050. The study uncovered notable fluctuations in carbon
storage within the Taklimakan Desert. Starting from the year 2000, the
carbon storage escalated from 0.66 tons to 0.71 tons by the year 2020.
Despite the desert highways construction diminishing the expanse of
unused land (desert), consequently leading to a decline in corresponding
carbon storage, the diverse vegetation in the ecological shelterbelts
flanking both sides of the highway has amplified carbon storage through

Table 7
Changes in NPP in Southern Xinjiang over the Past 30 Years.

Year Maximum value Minimum value Average value

1990 279.85 0.15 3.16
1995 345.97 0.14 3.98
2000 323.61 0.14 4.08
2005 391.46 0.28 4.85
2010 430.90 0.15 5.42
2015 433.52 0.16 5.63
2020 426.99 0.15 6.61

A. Mamtimin et al.



Ecological Informatics 86 (2025) 103027

10

the mechanisms of photosynthesis and other biological processes.
Overall, following the completion of the desert highway in 1996, the
carbon storage in the ecological shelterbelts surrounding the highway
escalated by 0.15 tons by 2020.

Spatially, the regions with high carbon storage in the Taklimakan
Desert are predominantly situated at the southern and northern

perimeters of the desert, whereas regions with lower values are mainly
concentrated in the heart of the desert and alongside the highway. The
rationale behind the high-value regions lies in the existence of contin-
uous and sporadic grasslands, farmland, as well as a modest quantity of
forest and water bodies, with grasslands representing the most wide-
spread vegetative cover.

From a chronological standpoint, between 1990 and 2020, carbon
storage burgeoned from 10.57 tons in 1990 to 17.75 tons in 2020,
registering a cumulative augmentation of 7.18 tons, propelled by the
consistent expansion of arable land. Despite the gradual reduction in
grassland area over nearly three decades, totaling a decrease of
19,431.6Km2, carbon storage paradoxically surged by 16.31 tons.
Within the realm of the desert highway segment, the carbon storage of
agricultural and construction lands steadily climbed from 1990 to 2020,

Fig. 8. Current Status of Carbon Storage in the Taklimakan Desert in 2050 under Various Scenarios.

Fig. 9. Changes in carbon storage in the Taklimakan Desert under various scenarios from 2020 to 2050.

Table 8
Changes in NPP in Southern Xinjiang under future scenarios.

Year Maximum value Minimum value Average value

2030 692.75 0.18 8.58
2040 675.45 0.19 8.44
2050 671.27 0.20 8.75
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while the carbon storage of grasslands initially soared and subsequently
dwindled, yet overall witnessed an increase of 0.13 tons. Conversely, the
unused land exhibited a progressive diminishing trend over time.

Moreover, by utilizing land use data prognosticated by the PLUS
model and integrating it with the InVEST model, the carbon storage of
the Taklimakan Desert in 2050 was projected under three scenario
models. The spatial distribution patterns in these three scenarios
exhibited minimal deviations when juxtaposed with the year 2020.
Nevertheless, in the S2 scenario, the fortification of the ecological
shelterbelts along the desert highway markedly elevated its carbon
storage capacity.

Changes in land use patterns have a significant impact on carbon
storage levels (Tianqi et al., 2022; Zafar et al., 2024), as evidenced by
the proliferation of verdant expanses in the deserts of southern Xinjiang
and the comprehensive integration of lush vegetation along desert
thoroughfares. These transformations have initiated substantial shifts in
land utilization within the expansive Taklimakan Desert. The spatial
organization of carbon sequestration exhibits a certain level of unpre-
dictability, with a diverse trend emerging after the year 2000, aligning
with numerous scholarly investigations both domestically and interna-
tionally (Can et al., 2023; Xinyan et al., 2024). For instance, in their
examination of land use dynamics in the Poyang Lake Basin, Liu and
colleagues determined that the sprawling urban development is the
primary driver of carbon loss in the region (Musheng et al., 2018). Yang
and team utilized a blend of the CAMarkovmodel and the InVESTmodel
to analyze the cumulative effects of various land use changes across six
distinct time periods on ecosystem carbon storage in the Yellow River
Basin. Their research revealed a decline in ecosystem carbon seques-
tration due to shifts in land use, particularly in swiftly urbanizing areas,
with a projected decrease of 258.863 million metric tons by the year
2030 when compared to 2018 levels (Yang et al., 2022). Zhao et al.
(2018) embarked on an extensive examination of land use trans-
formations and their impact on carbon sequestration in the upper rea-
ches of the semi-arid northwest Heihe River Basin over the next 15 years,
utilizing sophisticated cellular automata models and InVEST models.
Their results revealed a promising trend in carbon retention within the
upper reaches, attributed to efforts in ecological restoration, with a
cumulative increase of 10.27 Tg from 2015 to 2029. Conversely, regions
not subject to ecological interventions experienced a decrease in carbon
storage.

Adelisardou et al. (2022) conducted a comprehensive analysis of the

intricate relationships between historical land use changes from 2000 to
2019 and projected scenarios from 2019 to 2046 on carbon sequestra-
tion in the Girot Plain of Iran, employing a blend of GEE, cellular
automata models, and InVEST models. Their research identified a sharp
decline in carbon storage associated with the expansion of agricultural
activities and rapid urbanization, resulting in an annual loss of
− 475,547 Mg/year in carbon sequestration in the plain. Indeed, the
modification of land utilization patterns resulting in carbon emissions
exerts a deleterious effect on the sequestration of carbon in ecological
systems. The Intergovernmental Panel on Climate Change has recog-
nized the impact of land use transformation on carbon retention within
the broader framework of land use modifications (Kanglong et al., 2022;
Loukika et al., 2023; Shujun, 2023; Yang Yuping and Wenmin, 2023; Yi
Dan and Minghao, 2022; Zhang et al., 2023). Hence, it is vital to
implement corresponding ecological preservation strategies, actively
advocate for the establishment of ecological infrastructure, diminish the
overall anthropogenic alterations in land use, and thus augment the
holistic capacity of ecosystems to sequester carbon.

4.2. Influencing factors of NPP in the Taklimakan Desert

In recent decades, the amalgamation of shifting meteorological
patterns and anthropogenic activities has etched a profound imprint on
the local ecosystem and botanical vigor (Krivoguz, 2024). Through our
sophisticated prognostications employing the state-of-the-art CASA
model within the visionary CMIP6 future projection, the NPP in south-
ern Xinjiang is on the brink of undergoing remarkable metamorphoses
from 2030 to 2100, with both the peak and mean values reaching their
zenith in the promising year of 2060. This trajectory impeccably mirrors
the ambitious national targets delineated by China, aspiring to cap
carbon emissions prior to 2030 and achieve carbon neutrality by the
momentous milestone of 2060 (Li et al., 2023).

In a prospective scenario, the heightened precipitation and optimal
temperatures create ideal conditions for the process of photosynthesis in
plants, significantly boosting its efficiency. Expanding upon prior
research, our simulation also unveils significant regional variations in
the spatial distribution patterns of NPP, with areas of high value pre-
dominantly clustered in verdant oases and fertile river valleys, where
ample water resources nourish plant life with vital nutrients.
Conversely, regions of low value are primarily situated in arid desert
landscapes, where the scarcity of water severely inhibits plant growth,

Fig. 10. Changes in net primary productivity of vegetation in the Taklimakan Desert under future scenarios from 2030 to 2050.
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leading to decreased NPP (Li et al., 2016). The allocation of water re-
sources is acknowledged as a critical factor influencing NPP, as sufficient
water supply not only stimulates plant growth but also enhances overall
ecological productivity within a specific region. Furthermore, our study
identifies the construction of the Taklimakan Desert Highway and the
implementation of protective afforestation as pivotal factors contrib-
uting to the increase of NPP in southern Xinjiang.

Since the commencement of the ecological protection forest project
in 1995, there has been a notable upsurge in the regional NPP metric. Of
particular significance is the era following 2005, during which the
annual average NPP metric soared from 0.467 in 1995 to 0.825 by 2010.
This revelation stands as a testament to the effectiveness of the
ecological protection forest project in the Taklimakan Desert, not only in
enhancing vegetation coverage but also in enriching the productivity
and resilience of the ecosystem (Chen et al., 2017). Our investigation
represents a groundbreaking endeavor in examining the variations in
NPP subsequent to the establishment of the desert highway in southern
Xinjiang. Prior to this, there had been a scarcity of similar studies,
particularly in terms of outlining the trajectories and specific temporal
points of NPP fluctuations in prospective scenarios (Ge et al., 2021; Teng
et al., 2020). These findings underscore the crucial role of ecological
engineering interventions in improving the regional ecological land-
scape, promoting botanical growth, and enhancing the overall func-
tionality of the ecosystem, thereby providing strong support for
ecological conservation and sustainable development in southern
Xinjiang.

4.3. Potential applications and limitations

In this investigation, the primary methodologies employed encom-
pass the sophisticated InVEST, CASA, and PLUS frameworks. The
InVEST model functions by analyzing land usage metrics in conjunction
with carbon density statistics, wherein said carbon density metrics are
meticulously fine-tuned using temperature and precipitation data spe-
cific to the research locale, thereby conferring a nuanced degree of
localized relevancy. The CASA model intricately computes NPP subse-
quent to parameter refinements predicated on the region-specific data-
set, thereby ensuring a discernible benchmark of operational aptness.
Meanwhile, the dynamic PLUS model engenders simulations rooted in
historical land utilization patterns within the study domain, thus prof-
fering expansive heuristic utility.

Nevertheless, these models are not without constraints. One note-
worthy limitation pertains to the InVEST model, specifically in relation
to its reliance on historical data to estimate carbon density. Given the
ongoing impact of human activities on the natural landscape, the dy-
namic nature of carbon density necessitates real-time adjustments for
more precise simulations of carbon storage. Consequently, forthcoming
research endeavors should integrate field measurements of carbon
density within the study locale to uphold the veracity of analytical
outcomes.

5. Conclusion

Utilizing an array of diverse data sources, the InVEST and CASA
models were harnessed to scrutinize the spatial and temporal distribu-
tion patterns of carbon storage and NPP within the Taklimakan Desert
throughout the previous three decades. This examination entailed a
meticulous evaluation of the alterations in carbon storage and NPP
induced by the installation of the desert highway. Additionally, through
the integration of the PLUS model with CMIP6 climate models, we
explored the prospective trajectories of carbon storage and NPP in the
Taklimakan Desert across a spectrum of scenarios.

The discoveries unveil that the grasslands function as the principal
carbon reservoir in the Taklimakan Desert, having undergone a surge of
16.31 tons during the preceding three decades. Furthermore, subsequent
to the development of the desert thoroughfare in 1996, the ecologically

beneficial shelterbelts encircling the highway have enriched the carbon
repository by an additional 0.15 tons by the year 2020. Particularly
noteworthy is the marked elevation in NPP indices across southern
Xinjiang subsequent to the establishment of the ecological shelterbelt in
2005.

As we gaze into the future through various lenses, particularly those
that prioritize the preservation of our precious ecosystems, the phe-
nomenon of carbon sequestration in the majestic Taklimakan Desert
emerges with ever greater clarity. This results in a corresponding
augmentation of carbon storage along the desert highway, painting a
vivid picture of the potential impact of ecological protection efforts.

Projections indicate that the peak values for both maximum and
average NPP are anticipated to manifest in the year 2060, hinting at the
presence of favorable climatic conditions during this time under the
various future scenarios considered. These findings collectively high-
light the profound and constructive influence of eco-conscious initia-
tives on the intricate carbon dynamics within this parched expanse.

CRediT authorship contribution statement

Ali Mamtimin: Writing – review & editing, Project administration,
Funding acquisition, Formal analysis, Data curation. Kun Zhang:
Writing – original draft, Data curation, Conceptualization. Hajigul
Sayit: Software, Resources, Project administration, Methodology, Data
curation. Yu Wang: Methodology, Investigation, Conceptualization.
JiaCheng Gao: Software, Resources, Project administration, Method-
ology, Conceptualization. Ailiyaer Aihaiti: Validation, Software, Proj-
ect administration, Conceptualization. Meiqi Song: Visualization,
Supervision, Resources. Junjian Liu: Resources, Methodology. Fan
Yang: Software, Methodology, Formal analysis, Conceptualization.
Chenglong Zhou: Validation, Software, Project administration. Wen
Huo: Visualization, Conceptualization. Siqi Wang: Resources, Investi-
gation. Yangyao Xu: Resources, Project administration, Conceptuali-
zation. Gulinur Amar: Visualization, Validation, Software,
Conceptualization. Wei Liu: Resources, Software.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This study was supported by the “Tianshan Talent” Training Program
- Science and Technology Innovation Team (Tianshan Innovation Team)
Project (2022TSYCTD0007), National Natural Science Foundation of
China (42305132, 42375084), Youth Innovation Team of China Mete-
orological Administration (CAM2024QN13), the Xinjiang Key Labora-
tory of Desert Meteorology and Sandstorms Award Funding: Grant
number: 2023-38.

Data availability

All data of the research are available for download from the link
(https://chogo.teracloud.jp/share/1261056419908ce9 or https://gith
ub.com/yangchuan/SupplementData.git).

References

Adelisardou, F., Zhao, W., Chow, R., Mederly, P., et al., 2022. Spatiotemporal change
detection of carbon storage and sequestration in an arid ecosystem by integrating
Google Earth engine and InVEST (the Jiroft plain, Iran). Int. J. Environ. Sci. Technol.
19 (7), 5929–5944. https://doi.org/10.1007/s13762-021-03676-6.

Can, Cai, Min, Fan, Jing, Yao, Lele, Zhou, Yuanzhe, Wang, Xiaoying, Liang,
Liu, Zhaoqiang, Chen, Shu, 2023. Spatial-temporal characteristics of carbon
emissions corrected by socioeconomic driving factors under land use changes in

A. Mamtimin et al.

https://chogo.teracloud.jp/share/1261056419908ce9
https://github.com/yangchuan/SupplementData.git
https://github.com/yangchuan/SupplementData.git
https://doi.org/10.1007/s13762-021-03676-6


Ecological Informatics 86 (2025) 103027

13

Sichuan Province, southwestern China. Ecol. Indic. 77, 102164. https://doi.org/
10.1016/j.ecoinf.2023.102164.

Changqiao, Hong, Xiaobin, Jin, Changchun, Chen, et al., 2017. A review of research on
land net primary productivity estimation models integrating remote sensing data.
Progress Geograph. Sci. 36 (8), 16. https://doi.org/10.18306/dlkxjz.2017.08.002.

Chen, X., He, X., Wang, S., 2022. Simulated validation and prediction of land use under
multiple scenarios in Daxing district, Beijing, China, based on GeoSOS-FLUS model.
Sustainability 14, 11428. https://doi.org/10.3390/su141811428.

Chen, Tiantian, Li, Peng, Dingde, Xu, et al., 2017. Spatio-temporal pattern of net primary
productivity in Hengduan Mountains area, China: impacts of climate change and
human activities. Chin. Geogr. Sci. 27 (6), 948–962.

Dabu, Jiang, Xiaoxin, Wang, 2021. Interpretation of drought change in IPCC sixth
assessment report. J. Atmos. Sci. 44 (5), 650–653.

Dai Er, Fu, Huang, Yu, Zhuo, Wu, et al., 2016. Spatial and temporal patterns of carbon
sources/sinks in grassland ecosystems in Inner Mongolia and their relationship with
climate factors. J. Geogr. 71 (01), 21–34.

Dan, Luo, Zhongfa, Zhou, Quan, Chen, et al., 2023. The response of carbon storage in
karst areas to land use patterns: a case study of the Nanbei Panjiang River Basin.
J. Ecol. 43 (9), 3500–3516.

Fang, Xiao, Xiao, Li, Chengsen, Li, et al., 2019. Understanding the Taklimakan Desert.
Life World 02, 52–53.

Ge, Wenyan, Deng, Liqiang, Wang, Fei, et al., 2021. Quantifying the contributions of
human activities and climate change to vegetation net primary productivity
dynamics in China from 2001 to 2016. Sci. Total Environ. 773, 145648. https://doi.
org/10.1016/j.scitotenv.2021.145648.

Jie, Yang, Baopeng, Xie, Degang, Zhang, 2021. Research on spatiotemporal changes of
carbon storage in the Yellow River Basin based on InVEST and CA Markov models.
Chin. J. Ecol. Agric. (Chin. English). https://doi.org/10.13930/j.cnki.cjea.200746.

Kanglong, Deng, Qianqian, Wang, Xinyue, Chen, et al., 2022. Research progress and
prospects of carbon emissions from land use. Green Technol. 09, 024.

Krivoguz, Denis, 2024. Geo-spatial analysis of urbanization and environmental changes
with deep neural networks: insights from a three-decade study in Kerch peninsula.
Ecol. Indic. 80 (102513), 1574–9541. https://doi.org/10.1016/j.
ecoinf.2024.102513.

Li, Qing, Zhang, Chunlai, Shen, Yaping, et al., 2016. Quantitative assessment of the
relative roles of climate change and human activities in desertification processes on
the Qinghai-Tibet Plateau based on net primary productivity. Catena 147, 789–796.
https://doi.org/10.1016/j.catena.2016.09.005.

Li, Lü, Wang, Shijie, Chen, Youping, et al., 2023. Climate change in the eastern Xinjiang
of China and its connection to northwestern warm humidification. Atmosphere 14
(9), 1421.

Loukika, Kotapati Narayana, Keesara, Venkata Reddy, Buri, Eswar Sai,
Sridhar, Venkataramana, 2023. Future prediction of scenario based land use land
cover (LU&LC) using DynaCLUE model for a river basin. Ecol. Indic. 102223,
1574–9541. https://doi.org/10.1016/j.ecoinf.2023.102223.

Ma, Q., Wang, X., Chen, F., Wei, L., Zhang, D.K., Jin, H., 2021. Carbon sequestration of
sand-fixing plantation of Haloxylon ammodendron in Shiyang River basin: storage,
rate and potential. Glob. Ecol. Conserv. 28, e01607. https://doi.org/10.1016/j.
gecco.2021.e01607.

Mammitin, Ali, 2015. Research on Carbon Budget Characteristics and Influencing Factors
in Xinjiang Desert Region. Nanjing University of Information Science and
Technology.

Musheng, Liu, Bangyou, Yan, Fang, Yu, 2018. Etc research on land use dynamic changes
in Poyang Lake Basin based on GIS. Jiangxi Sci. 36 (1), 7. https://doi.org/10.13990/
j.issn1001-3679.2018.01.013.

Piao, S., Meng, T., Zhuo, L., et al., 2018. Lower land-use emissions responsible for
increased net land carbon sink during the slow warming period. Nat. Geosci. 11.
https://doi.org/10.1038/s41561-018-0204-7.

Qiao, F., 2022. Practice on carbon sequestration measurement and monitoring of the
carbon sequestration afforestation project in the Kubuqi Desert area—taking the
carbon sequestration afforestation project of Inner Mongolia Yitai Group in Hangjin
Banner as an example. Inner Mongolia Forestry Investig. Design 45 (04), 55–58.

Shengtao, Su, Yuan, Zeng, Dan, Zhao, et al., 2022. Optimization and analysis of
estimation model for net primary productivity of land vegetation in China: based on
China ecosystem research network data. J. Ecol. 42 (4), 14. https://doi.org/
10.5846/stxb202011263031.

Shuchao, Gao, Yiqing, Chen, Zongzhu, Chen, et al., 2023. Carbon storage and spatial
distribution characteristics of forest ecosystems in Hainan Island. J. Ecol. 43 (9),
3558–3570.

Shujun, Xu, 2023. Research on carbon emission effects and characteristics based on land
use. Rural Sci. Exp. 6, 34–36.

Solomon, S., Pierrehumbert, R.T., Matthews, D., et al., 2013. Atmospheric composition,
irreversible climate change, and mitigation policy. Environ. Sci. https://doi.org/
10.1007/978-94-007-6692-1-15.

Song, Y., Chen, X., Li, Y., Fan, Y., Adrian, L. Collins., 2022. Quantifying the provenance
of dune sediments in the Taklimakan Desert using machine learning,
multidimensional scaling and sediment source fingerprinting. CATENA 210, 105902.
https://doi.org/10.1016/j.catena.2021.105902.

Teng, Mingjun, Zeng, Lixiong, Wenjie, Hu, et al., 2020. The impacts of climate changes
and human activities on net primary productivity vary across an ecotone zone in
Northwest China. Sci. Total Environ. 714, 136691. https://doi.org/10.1016/j.
scitotenv.2020.136691.

Tianqi, Rong, Pengyan, Zhang, Huiru, Zhu, Ling, Jiang, Yanyan, Li, Zhenyu, Liu, 2022.
Spatial correlation evolution and prediction scenario of land use carbon emissions in
China. Ecol. Inform. 71, 101802. https://doi.org/10.1016/j.ecoinf.2022.101802.

Van Pham, T., Do, T.A.T., Tran, H.D., 2023. A.N.T. Do assessing the impact of ecological
security and forest fire susceptibility on carbon stocks in Bo trach district, Quang
Binh province, Vietnam. Ecol. Inform. 74, 101962. https://doi.org/10.1016/j.
ecoinf.2022.101962.

Vendrame, N., Tezza, L., Pitacco, A., 2018. Study of the carbon budget of a temperate-
climate vineyard: inter-annual variability of CO2 flux. Am. J. Enol. Vitic. 70 (1),
34–41. https://doi.org/10.5344/ajev.2018.18006.

Verma, Pragati, Siddiqui, Azizur Rahman, Mourya, Nitesh Kumar, et al., 2024. Forest
carbon sequestration mapping and economic quantification infusing MLPnn-Markov
chain and InVEST carbon model in Askot Wildlife Sanctuary, Western Himalaya.
Ecol. Inform. 79 (102428). https://doi.org/10.1016/j.ecoinf.2023.102428.

Wang, S.Q., Huang, Y., 2020. Determinants of soil organic carbon sequestration and its
contribution to ecosystem carbon sinks of planted forests. Glob. Chang. Biol. 26 (5),
3163–3173. https://doi.org/10.1111/gcb.15036.

Wei, Bai, Genxu, Wang, Guangsheng, Liu, 2011. Response of CO2 emissions during the
growth period of alpine meadows on the Qinghai Tibet Plateau to temperature rise.
Ecol. J. 30 (06), 1045–1051.

Xinyan, Wu, Caiting, Shen, Linna, Shi, Yuanyuan, Wan, Jinmei, Ding, Qi, Wen, 2024.
Spatio-temporal evolution characteristics and simulation prediction of carbon
storage: A case study in Sanjiangyuan Area, China. Ecol. Inform. 80, 102485.
https://doi.org/10.1016/j.ecoinf.2024.102485.

Xu, Y., Yang, Y., 2022. A 5 km resolution dataset of monthly NDVI product of China
(1982–2020), p. CSD 7. https://doi.org/10.11922/11-6035.csd.2021.0041.zh.

Xuejie, Bai, Xufeng, Wang, Xiaohui, Liu, Xuqiang, Zhou, 2022. Characteristics and
driving factors analysis of carbon flux changes in wetland, farmland, and grassland
ecosystems in the Heihe River Basin. Remote Sens. Technol. Appl. 37 (01), 94–107.

Yang Yuping, Hu, Wenmin, Jia Guanyu, et al., 2023. Scenario simulation of land use
carbon storage in the Dongting Lake area based on InVEST and ANN-CA models.
J. Nanjing For. Univ. (Nat. Sci. Ed.) 47 (4), 175–184. https://doi.org/10.12302/j.
issn.1000-2006.202110020.

Yang, Y., Wang, G.X., Ran, F., et al., 2016. Litter carbon stock and spatial patterns of
main forest types in Tibet. Chin. J. Ecol. https://doi.org/10.13292/j.1000-
4890.201603.018.

Yang, F., et al., 2022. Evaluation of carbon sink in the Taklimakan Desert based on
correction of abnormal negative CO2 flux of IRGASON. Sci. Total Environ. 838,
155988. https://doi.org/10.1016/j.scitotenv.2022.155988.

Yi Dan, Ou, Minghao, Guo Jie, 2022. Etc research progress and trend prospects on carbon
emissions and low-carbon optimization of land use. Resource Sci. 44 (8), 15. https://
doi.org/10.18402/resci.2022.08.02.

Zafar, Z., Sajid Mehmood, M., Shiyan, Z., Zubair, M., Sajjad, M., Yaochen, Q., 2023.
Fostering deep learning approaches to evaluate the impact of urbanization on
vegetation and future prospects. Ecol. Indic. 146, 109788. https://doi.org/10.1016/
j.ecolind.2022.109788.

Zafar, Zeeshan, Zubair, Muhammad, Zha, Yuanyuan, Mehmood, Muhammad Sajid,
Rehman, Adnanul, Fahd, Shah, Nadeem, Adeel Ahmad, 2024. Predictive modeling of
regional carbon storage dynamics in response to land use/land cover changes: an
InVEST-based analysis. Ecol. Indic. 82, 102701. https://doi.org/10.1016/j.
ecoinf.2024.102701.

Zhang, Z., Li, X., Liu, L., Jia, R., Zhang, J., Wang, T., 2009. Distribution, biomass, and
dynamics of roots in a revegetated stand of Caragana korshinskiiin the Tengger
Desert, northwestern China, 122 (1), 109–119. https://doi.org/10.1007/s10265-
008-0196-2.

Zhang, Q., Lei, H., Yang, D., et al., 2020. Decadal variation of CO2 flux and its budget in a
wheat and maize rotation cropland over the North China Plain. Biogeosciences 17
(8), 2245–2262. https://doi.org/10.5194/bg-17-2245-2020.

Zhang, S., Hao, X.M., Zhao, Z.Y., et al., 2023. Natural vegetation succession under
climate change and the combined effects on net primary productivity. Earth’s
Future. https://doi.org/10.1029/2023EF003903.

Zhao, M., He, Z., Du, J., et al., 2018. Assessing the effects of ecological engineering on
carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 98 (Mar),
29–38. https://doi.org/10.1016/j.ecolind.2018.10.052.

A. Mamtimin et al.

https://doi.org/10.1016/j.ecoinf.2023.102164
https://doi.org/10.1016/j.ecoinf.2023.102164
https://doi.org/10.18306/dlkxjz.2017.08.002
https://doi.org/10.3390/su141811428
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0020
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0020
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0020
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0025
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0025
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0030
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0030
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0030
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0035
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0035
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0035
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0045
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0045
https://doi.org/10.1016/j.scitotenv.2021.145648
https://doi.org/10.1016/j.scitotenv.2021.145648
https://doi.org/10.13930/j.cnki.cjea.200746
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0065
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0065
https://doi.org/10.1016/j.ecoinf.2024.102513
https://doi.org/10.1016/j.ecoinf.2024.102513
https://doi.org/10.1016/j.catena.2016.09.005
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0080
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0080
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0080
https://doi.org/10.1016/j.ecoinf.2023.102223
https://doi.org/10.1016/j.gecco.2021.e01607
https://doi.org/10.1016/j.gecco.2021.e01607
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0095
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0095
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0095
https://doi.org/10.13990/j.issn1001-3679.2018.01.013
https://doi.org/10.13990/j.issn1001-3679.2018.01.013
https://doi.org/10.1038/s41561-018-0204-7
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0110
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0110
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0110
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0110
https://doi.org/10.5846/stxb202011263031
https://doi.org/10.5846/stxb202011263031
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0125
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0125
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0125
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0130
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0130
https://doi.org/10.1007/978-94-007-6692-1-15
https://doi.org/10.1007/978-94-007-6692-1-15
https://doi.org/10.1016/j.catena.2021.105902
https://doi.org/10.1016/j.scitotenv.2020.136691
https://doi.org/10.1016/j.scitotenv.2020.136691
https://doi.org/10.1016/j.ecoinf.2022.101802
https://doi.org/10.1016/j.ecoinf.2022.101962
https://doi.org/10.1016/j.ecoinf.2022.101962
https://doi.org/10.5344/ajev.2018.18006
https://doi.org/10.1016/j.ecoinf.2023.102428
https://doi.org/10.1111/gcb.15036
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0175
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0175
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0175
https://doi.org/10.1016/j.ecoinf.2024.102485
https://doi.org/10.11922/11-6035.csd.2021.0041.zh
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0205
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0205
http://refhub.elsevier.com/S1574-9541(25)00036-6/rf0205
https://doi.org/10.12302/j.issn.1000-2006.202110020
https://doi.org/10.12302/j.issn.1000-2006.202110020
https://doi.org/10.13292/j.1000-4890.201603.018
https://doi.org/10.13292/j.1000-4890.201603.018
https://doi.org/10.1016/j.scitotenv.2022.155988
https://doi.org/10.18402/resci.2022.08.02
https://doi.org/10.18402/resci.2022.08.02
https://doi.org/10.1016/j.ecolind.2022.109788
https://doi.org/10.1016/j.ecolind.2022.109788
https://doi.org/10.1016/j.ecoinf.2024.102701
https://doi.org/10.1016/j.ecoinf.2024.102701
https://doi.org/10.1007/s10265-008-0196-2
https://doi.org/10.1007/s10265-008-0196-2
https://doi.org/10.5194/bg-17-2245-2020
https://doi.org/10.1029/2023EF003903
https://doi.org/10.1016/j.ecolind.2018.10.052

	The construction of shelterbelts along the desert highway has increased the carbon sequestration capacity of the Taklimakan ...
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Datasets
	2.3 Data processing methods
	2.3.1 InVEST model
	2.3.2 CASA model
	2.3.3 PLUS model
	2.3.4 Accuracy verification


	3 Results
	3.1 Land use transformation in the Taklimakan Desert over the previous three decade
	3.2 Spatial and temporal fluctuations in carbon storage in the Taklimakan Desert from 1990 to 2020 utilizing the InVEST model
	3.3 Temporal and spatial fluctuations of net primary productivity in the enigmatic Taklimakan Desert from 1990 to 2020 usin ...
	3.4 Changes in carbon storage in the Taklimakan Desert under various future scenarios
	3.5 Spatiotemporal dynamics of net primary productivity in the Taklimakan Desert under various future scenarios

	4 Discussion
	4.1 Influencing factors of carbon storage in the Taklimakan Desert
	4.2 Influencing factors of NPP in the Taklimakan Desert
	4.3 Potential applications and limitations

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


