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A B S T R A C T   

Humans have been modifying ecosystems since before the Holocene began ca. 12,000 years ago, even in 
Neotropical regions. The Amazon was once thought to be ‘pristine’ and only lightly impacted by Indigenous 
people before European colonization in the Americas (e.g., pre-Columbian); however, multiple lines of evidence 
have shown that Indigenous human activities over the past millennia have left ecological legacies on modern 
ecosystems. We review the various lines of evidence used to reconstruct pre-Columbian Indigenous human ac
tivity in Amazonia, and assess the spatial and temporal resolution and limits of each one of them. We suggest that 
a multi-proxy approach is always preferred, and that lines of evidence that cover overlapping yet discrete spatial 
and temporal scales can provide a robust and comprehensive assessment of the nuances of pre-Columbian 
Indigenous human activities in Amazonia, and how they affect modern ecosystems.   

1. Introduction 

Humans are now considered the major driving force in many abiotic 
and biotic processes on Earth, and it has been suggested that this has 
created a distinct geological era called the Anthropocene (e.g., Crutzen, 
2002; Di Marco and Santini, 2015; Gallardo et al., 2015; Halpern et al., 
2008; Lewis and Maslin, 2015; Pachauri et al., 2015; Vitousek et al., 
1997). Humans contributed to the extinction of Pleistocene megafauna 
across the Neotropics (Barnosky and Lindsey, 2010; Rozas-Davila et al., 
2016, 2021), and have been modifying landscapes in Neotropical eco
systems for at least the last 12,000 years (Ellis et al., 2021; Roosevelt, 
2013). Forms of human activities, including plant cultivation and 
domestication, have also occurred in Neotropical regions for at least 10, 
000 years (Lombardo et al., 2020; Piperno, 2011; Roberts et al., 2017). 
Many of these activities, particularly those that have occurred over the 
last 2000 years, likely left persistent effects, or ecological legacies, on 

Neotropical ecosystems that are still visible today (Furquim et al., 2023; 
Levis et al., 2017; McMichael, 2021; McMichael et al., 2023; Ross, 
2011). 

Reconstructing human-environment interactions through time is 
particularly important in the ca. 6 million km2 of Amazonian rainforests, 
which hold a large proportion of Earth’s biodiversity (Olson et al., 
2001). The suggestion that pre-Columbian Indigenous human influence 
played a large role in shaping the biodiversity observed in today’s 
ecosystems has generated an important debate (e.g. Balée, 2010; 
Clement et al., 2015; Levis et al., 2017; Piperno et al., 2021; Piperno 
et al., 2019; Roosevelt, 2013). Most scholars from various disciplines 
agree that the pre-Columbian Indigenous Peoples of Amazonia influ
enced its ecosystems to some degree, but the intensity, cultural vari
ability, spatial extensiveness, spatial variability, temporal duration and 
continuity remain debated (Barlow et al., 2012; Bush et al., 2015; 
Clement et al., 2015; Heckenberger et al., 2003, 2008; Levis et al., 2012, 
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2017; McMichael et al., 2012a; Piperno et al., 2015). Much of the con
troversy results from the overall paucity of data in the region, differ
ences in the interpretation of the same datasets, and on the ecological 
heterogeneity of this vast area. Even the largest ecological datasets 
within Amazonia reflect mostly relatively easily accessible areas 
(McMichael et al., 2017). Addressing aspects of this debate has impor
tant implications for how we conserve and manage modern ecosystems, 
as well as for Indigenous sovereignity. 

Ecologists, paleoecologists, archaeologists, anthropologists, ethnog
raphers, Indigenous peoples, and local communities can all provide 
valuable information about the activities of pre-Columbian Indigenous 
people and their influence on Amazonian vegetation and landscapes. 
These lines of information, however, come from a variety of sources, are 
measured at different spatial and temporal scales, and the capabilities of 
reconstructing pre-Columbian human activities vary between them. 
Integrating different data and knowledge sources, however, is vital for 
understanding multifaceted and complex problems, and to achieve a 
more reliable and robust assessment of the influence of pre-Columbian 
activities on Amazonian ecosystems (Mayle and Iriarte, 2014; McCle
nachan et al., 2015; Tengö et al., 2014). 

A large part of data interpretation is recognizing the advantages and 
limitations of the various proxies, methods, and settings used to recon
struct pre-Columbian Indigenous human activities and their effect on 
tropical systems. Here we review proxies (i.e., lines of evidence) and 
settings (i.e., depositional environments or archival material) commonly 
used to assess pre-Columbian human activities and influences on 
Amazonian ecosystems, with a specific focus on the spatial and temporal 
resolution (the potential sampling frequency of the archival material) 
and spatial and temporal limits (the total amount of space or time 
potentially captured within the record). We also discuss the detectability 
and variability of proxies used to assess pre-Columbian Indigenous 
human activities and their influences on Amazonian ecosystems (Fig. 1). 
Our goal is to provide a spatio-temporal framework for the various 
proxies used to assess long-term Indigenous human activity in Amazo
nian ecosystems so that future work can recognize the advantages and 
limitations of all of the proxies and integrate them more 
comprehensively. 

2. Soils as local-scale archives of pre-Columbian Indigenous 
human activities and vegetation change 

Soils contain a wealth of valuable information and proxies that can 
be used to reconstruct pre-Columbian human activities and the influence 
of Indigenous Peoples on the vegetation. Archaeological sites, artefacts, 
macrofossils, and microfossils that directly document pre-Columbian 
human activities are all found on, or in, tropical terrestrial soils 
(Figs. 1 and 2). Information from archaeological surveys is beginning to 

be compiled into online databases, including the AmazonArch 
(Amazonian Archaeological Sites Network), which contains the 
geographical location and basic archaeological information for over 
10,000 sites (Clement et al., 2015; Riris and Arroyo-Kalin, 2019; Win
klerPrins and Aldrich, 2010; https://sites.google.com/view/amazona 
rch). The variability and diversity of archaeological evidence includes 
sites containing artifacts such as lithics, ceramics, rock paintings, or 
petroglyphs, earthworks, and anthropogenic soils (called Amazonian 
Dark Earths, or ADE) (e.g., Neves et al., 2021) (examples of ceramics and 

Fig. 1. The array of proxies that can be used to detect pre-Columbian Indige
nous human activity in Amazonia, and the source, or archival material from 
which they are derived. The proxies are shown on a gradient from those which 
are used specifically to assess human activities (far right) to those which are 
used to assess both human and non-human processes (far left). ADE =
Amazonian Dark Earths. 

Fig. 2. Examples of directly documented evidence of human activity found in 
Amazonian soils. The top panel shows an archaeological excavation, and the 
middle panel shows ceramic artifacts that were uncovered during the excava
tion (Photos: Bernardo Oliveira/Instituto Mamirauá). The bottom panel shows a 
Google Earth image of earthworks that were uncovered in southwestern Ama
zonia following deforestation of the landscape. 
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earthworks shown in Fig. 2). At some of these sites, pre-Columbian 
people have modified soil texture, nutrient content, and stable iso
topes, leaving persistent legacies of soil properties for thousands of years 
(Glaser and Birk, 2012; Glaser and Woods, 2004; Lehman et al., 2003). 

Phytoliths are microscopic bodies of silica that are produced in the 
cells of many plant species and often preserved in high quantities in soil 
archives where pollen and macrofossils have largely decayed (Piperno, 
2006) (example shown in Fig. 3). Phytolith analysis is commonly per
formed on samples obtained at archaeological sites, but also in soils that 
are not associated with archaeological settings such as lake sediments 
and terrestrial soils (Fig. 1). Phytoliths often reflect localized plant 
decay, particularly in terrestrial soils, as they do not have intrinsic 
dispersal mechanisms that would carry them considerable distances 
from the depositional environment as can be the case with pollen. 
Studies of phytoliths in surface soils from tropical forests in Panama 
showed that phytolith movement, via fire, or surface water transport, 
can be as little as 25–30 m from their source area (Piperno, 1988) or up 
to 100–120 m from their source plant (Piperno, pers. Comm.; Piperno 
and McMichael, manuscript in preparation). Further, lakes with 
in-flowing streams may contain phytoliths from considerable distances, 
and in fluvial forest soils from Brazil, phytolith movement from areas a 
substantial distance upstream is indicated (Watling et al., 2016). 
Seasonally flooded savannas might be expected to be similar. 

Phytoliths directly document different types of vegetation, such as 
savanna, open forests with bamboo, evergreen, semi-evergreen, and 
deciduous forest, and early successional growth typical of human 
disturbance. Phytoliths also directly detect some major and now-minor 
crops and other economic plants, (e.g., maize [Zea mays L], Cucurbita 
spp. [squashes and gourds], manioc [Manihot esculenta Cranz], arrow
root [Maranta arundinacea L.], and various palm species) (Carson et al., 
2014; Dickau et al., 2013; Lombardo et al., 2020; McMichael et al., 
2012a, 2012b; Piperno, 2006; Watling et al., 2016; Whitney et al., 2013, 
2014). All palms, grasses, and sedges, and many arboreal basal angio
sperms and eudicotyledons, produce high phytolith numbers diagnostic 
to at least the family, and not uncommonly, genus levels (Huisman et al., 
2018; Morcote-Ríos et al., 2015, 2016; Piperno, 2006; Piperno and 
McMichael, 2023; Piperno et al., 2019; Witteveen et al., 2022). The high 
phytolith production of palms and grasses also means that their absence 
in the record actually represents the absence of these taxa in the vege
tation (Piperno et al., 2015). Not all plants produce phytoliths, however, 
and some taxa will remain undetectable in reconstructions (Piperno, 
2006). This is the case with some major economically important trees, e. 
g., Bertholletia excelsa (Brazil nut), Annona spp. (soursop, cherimoya), 
guava (Psidium guajava L.). 

Starch grains (example shown in Fig. 3) can identify certain culti
vars, such as maize (Zea mays L.), squashes (Cucurbita spp.), manioc 
(Manihot esculenta Cranz), and other tuber crops (e.g., Pearsall et al., 
2004; Piperno, 2006; Piperno, 2011). Some crops that do not produce 
phytoliths, such as peanuts (Arachis hypogaea L.) and chili peppers 
(Capsicum spp.), have diagnostic starch grains (e.g., Dickau et al., 2007; 
Ezell et al., 2006; Piperno, 2006). Beans, including Phaseolus species, 
and some palm trees that were used by pre-Columbian Indigenous 
Peoples also produce identifiable starch grains (Watling et al., 2018). 
The starch grains are usually isolated from ceramics or stone tools found 
at archaeological sites (Fig. 1) (Iriarte et al., 2004; Pearsall et al., 2004; 
Watling et al., 2018; Young et al., 2023). Macrobotanical remains, often 
carbonized, are typically recovered from site sediments and along with 
the starch grains and phytoliths, provide empirical evidence for the diets 
and lifestyles of pre-contact Indigenous Peoples (e.g., Furquim et al., 
2021; Watling et al., 2018). 

Macroscopic charcoal fragments (e.g., >500 μm) found in soils, 
including at archaeological sites, represent localized past fire events (e. 
g., Rhodes, 1998; Whitlock and Larsen, 2002) (example shown in Fig. 3). 
In the aseasonal forests with a limited dry season (for instance, those 
found in northwestern Amazonia), forest fire almost always starts with 
human intervention (Fig. 1) (Bush et al., 2008; Malhi et al., 2008). The 

Fig. 3. Microfossils found in soils in Amazonia that can document human ac
tivity and environmental changes. The top panel shows phytoliths from the tree 
Licania micrantha Miq. (Chrysobalanceae), which are diagnostic to at least the 
genus level (Piperno and McMichael, 2023) (Photo: Dolores Piperno). The 
middle panel shows starch grains of Phaseolus vulgaris L. (beans) (Photo: Dolores 
Piperno). The bottom panel shows charcoal isolated from Amazonian soils 
(Photo: Crystal McMichael). 
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presence of charcoal in these aseasonal forests indicates human activity 
(Bush et al., 2008), but escaped wildfires in these areas can also occur 
during extreme droughts (Flores et al., 2017). In drier areas, i.e., the 
seasonal forests that border savannas in eastern Amazonia, fires are less 
dependent on human ignition, but are still more frequent when humans 
are present (Alencar et al., 2004; Maezumi et al., 2015, 2018b; Nepstad 
et al., 2004; Power et al., 2016; Ramos-Neto and Pivello, 2000). 
Paleoecological and archaeological data show that fire frequency across 
Amazonia was more frequent in the late Holocene, when climate was 
wetter than the early-to mid-Holocene (Arroyo-Kalin and Riris, 2021; 
McMichael and Bush, 2019; Nascimento et al., 2022), highlighting that 
the primary source of ignition was human activity. 

Charcoal retains diagnostic morphological features of the plant from 
which it is derived, and can be used to identify types of plants, e.g., 
woody versus non-woody taxa (Bodin et al., 2020; Di Pasquale et al., 
2008; Orvis et al., 2005). Charcoal morphology can sometimes provide 
taxonomic identification to the family-level and sometimes genus or 
species level in tropical ecosystems, and has been used to characterize 
land use and successional forests at archaeological sites (Bachelet and 
Scheel-Ybert, 2017; Bodin et al., 2019; Cartwright, 2015; Fernandes 
Caromano et al., 2013; Goulart et al., 2017; Iriarte et al., 2020; Schee
l-Ybert et al., 2014). The chemical properties (i.e., FTIR spectroscopy) of 
charcoal fragments can also be used to infer burn temperature of the fire 
events, and can also distinguish plant types (e.g. woody vs grassy ma
terial) that were burned (Gosling et al., 2019; Maezumi et al., 2021). 

With soil surveys to reconstruct past fire events, replicate soil cores 
are typically collected from a given site (100 m–200 m radius) (Ham
mond et al., 2006; McMichael et al., 2012a, 2012c) to account for the 
uneven deposition of charcoal that occurs on localized scales after 
burning of vegetation (e.g. Lynch et al., 2004). Thus, the repeated 
absence of charcoal from soil cores located in close proximity can be 
confidently interpreted that the sampled area truly lacked fire rather 
than the sampling was unable to detect the fire (McMichael et al., 2012a, 
2015). Replicate soil cores can also indicate whether large tracts of 
vegetation were burned or repeatedly burned, especially if some of the 
particles are 14C AMS dated (Feldpausch et al., 2022; Heijink et al., 
2022; McMichael et al., 2012a; Sanford and Horn, 2000; Whitlock and 
Larsen, 2002). Replicate cores are often also analysed to look at how 
vegetation change has occurred over relatively small geographic scales 
or along environmental gradients (e.g., Heijink et al., 2022; McMichael 
et al., 2012a; McMichael et al., 2012b; Watling et al., 2017). 

Stable carbon and nitrogen isotopes are commonly used to infer 
vegetation dynamics (Fig. 1) (de Freitas et al., 2001; Pessenda et al., 
1998). Stable carbon isotopes from soils have also been used to infer 
landscape transformations by pre-Columbian Indigenous Peoples. These 
are particularly useful for documenting changes or shifts between C3 
and C4 grass assemblages and vegetation changes on pre-Columbian 
raised fields (Iriarte et al., 2010; McKey et al., 2010; Watling et al., 
2017). The analysis of stable carbon and nitrogen isotopes from bone 
collagen has also been used to reconstruct dietary changes in 
pre-Columbian Indigenous Peoples (e.g., Colonese et al., 2020; Roose
velt, 1989). 

Soils have a very high spatial resolution as multiple samples can be 
collected within meters of each other (i.e., high potential sampling 
frequency) and a very high spatial limit because they are found almost 
everywhere in terrestrial systems (Fig. 4). The temporal limit of soils is 
also very high; soils capture evidence from modern times to thousands of 
years ago (Fig. 4). The uppermost 1 m of Amazonian soils typically 
represent the last several thousand years (Piperno, 2016; Piperno et al., 
2021). Soils, however, have a low temporal resolution due to processes 
such as soil formation, erosion, and bioturbation, and establishing 
age-depth relationships is not always possible (e.g., Mayle and Iriarte, 
2014; Sanford and Horn, 2000) (Fig. 4a). Radiocarbon (14C AMS) dates 
from archaeological sites or soil microfossils usually have a 2-sigma 
precision of ca. 100 years (Neves et al., 2004; Piperno, 2016; Schaan 
et al., 2012; Taylor and Bar-Yosef, 2016). When multiple dates are 

obtained from the same core, however, general trends in fire or vege
tation of older to younger within soil cores can often be established (e.g., 
Hill et al., 2023; McMichael et al., 2012a; McMichael et al., 2012c; 
Piperno et al., 2021). 

3. Lake sediments as local-to regional-scale archives of pre- 
Columbian Indigenous human activity and vegetation change 

Like soils, lake sediments also contain microfossils that can be used 
to document pre-Columbian human activities and the resulting legacies 
on ecosystems. Lakes sufficiently old for palaeoecological studies are 
rare across much of Amazonia, limiting the spatial resolution of palaeo- 
vegetation reconstructions (Bush and Silman, 2007), although the 
temporal resolution can sometimes be high (Fig. 4). Unlike soils, lake 
sediments typically have continuous deposition and thus robust strati
graphic integrity, and age-depth relationships can be derived that place 
temporal frameworks on human activities and environmental change. 
Most lake sediment records from Amazonia contain samples analysed at 

Fig. 4. The spatial and temporal characteristics of data sources used to assess 
past human activities and vegetation change. (a) Each type of archival material 
color-coded and plotted in relation to its spatial resolution (the highest possible 
sampling frequency of archival material across space) and temporal resolution 
(the highest possible sampling frequency of archival material through time). (b) 
The types of archival materials are plotted in relation to their spatial and 
temporal limits (the total amount of space or time captured within an archive). 
Dotted lines indicate the potential range of resolution/limit achieved from each 
data source. Crosses are centered on the most common resolution/limit ach
ieved by sampling efforts on the data sources in Amazonia. 
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centennial scale temporal resolution (e.g., every century to several 
hundred years) (Nascimento et al., 2022). In rare deep lakes with anoxic 
conditions, however, the sediments may retain sub-decadal stratig
raphy, allowing an almost continuous insight into the local dynamics of 
human activity and forest recovery (Fig. 4) (Åkesson et al., 2021; Bush 
et al., 2016, 2021a). The temporal limit of lake sediment records varies 
depending on lake type, local depositional environment and preserva
tion conditions (Fig. 4). Few sites in Amazonia extend back to the 
Pleistocene (Mayle et al., 2000; Whitney et al., 2011), as most 
non-riverine lakes were formed (and sedimentation began) in the mid-to 
late-Holocene periods (ca. 8000-4000 years ago) (e.g. Bush and McMi
chael, 2016; Bush et al., 2007; Carson et al., 2014; Nascimento et al., 
2022; Urrego et al., 2013). 

Charcoal abundances and their changes within a sedimentary 
sequence are typically used to infer changes in the amount of biomass 
burning in the surrounding landscape (e.g. Marlon et al., 2013; Marlon 
et al., 2016); equated to fire severity (Keeley, 2009). Recent work has 
also estimated burn temperatures from charcoal found within lake 
sediments, and shown how vegetation composition and traits change 
depending on the intensity of the fire (Nascimento et al., 2023). Char
coal particles are deposited into lake sediments from airborne or 
terrestrial sources, and assessing size classes of charcoal particles is 
commonly used to distinguish local from regional input (Clark and 
Royall, 1996; Sanford and Horn, 2000). The relationships between 
charcoal abundance and biomass burned, and the source area of char
coal particles for Amazonian lakes remain poorly documented and need 
further exploration. 

Organic macrofossils and microfossils (e.g., pollen and spores) that 
decay in soils typically preserve in lake sediments. Fungal spores can be 
associated with fire and thus human activity (Fig. 1) (Brugger et al., 
2016; Loughlin et al., 2018). Tree and shrub pollen can generally be 
identified to a more specific taxonomic level than phytoliths, although 
the inverse is true for herbaceous taxa (especially grasses and sedges) 
and palm taxa (Piperno, 2006). Over 1000 pollen morphotypes from 
Amazonia have been identified and catalogued (Bush and Weng, 2007), 
with up to over 100 pollen types being identified within a single pollen 
sample (Åkesson et al., 2021). Pollen from domesticated maize (Zea 
mays) (see example in Fig. 5) can be reliably identified because wild Zea 
does not occur in South America, but major crop plants such as manioc 
(Manihot esculenta) and sweet potato (Ipomoea batatas) cannot be 
differentiated from their wild varieties using pollen because the latter 
are native to South America, and taxonomic distinctions cannot reliably 
be made (Mayle and Iriarte, 2014; Whitney et al., 2012). 

The spatial representation of pollen and phytolith data depends on 
site-specific characteristics of the lake. Phytoliths from lake sediment 
cores have varying source areas that depend on lake size and the pres
ence of in-flowing streams; the assemblages are often mixtures of these 
source areas (Carson et al., 2014; Mayle and Iriarte, 2014; Piperno, 
2006; Plumpton et al., 2020; Whitney et al., 2013, 2014). Pollen as
semblages also reflect a combination of local and regional inputs, and 
this varies, not only depending upon lake size and the presence or 
absence of inflowing streams, but also on the relative proportion of 
wind-pollinated taxa in the parent vegetation (Bush et al., 2021b; 
Jacobson and Bradshaw, 1981). In the forest-savanna ecotone regions of 
Bolivia, where the dominant forest taxa (e.g. Moraceae) have 
wind-dispersed pollen, large lakes may have a pollen source area of up to 
40 km (Whitney et al., 2019). However, in many areas of Amazonia, 
closed-canopy forests are dominated by insect-pollinated taxa, where 
very small lakes register much smaller pollen source areas of potentially 
only 1–2 km2 (Blaus et al., 2023). Differentiating between local- and 
regional-scale human land-use and deforestation is possible, however, 
with pollen analyses from tight clusters of small lakes (Bush et al., 2007) 
or pairs of small and large lakes (Carson et al., 2014). It is also impor
tant, where possible, to pair lake sediments from small lakes with nearby 
archaeological sites to provide matching spatial resolution and a 
continuous temporal framework of past land use (Carson et al., 2014; 

Mayle and Iriarte, 2014; Whitney et al., 2014). 
Diatoms are siliceous microalgae that are found in water bodies that 

provide information about environmental or hydrological conditions (e. 
g., Battarbee, 1986; Benito et al., 2018) (Fig. 1, for example see Fig. 5). 
Diatoms are commonly assessed in lake sediment reconstructions, and 
can indicate changes in hydrology (e.g., lake level recorded by changing 
proportions of deep versus shallow water taxa) or water quality that are 
related to climate dynamics (Castro et al., 2013; Nascimento et al., 
2021) (Fig. 1). Diatoms, however, can also provide information about 
pre-Columbian human activity in Amazonia (Fig. 1). They have been 
used to document changes in wetland management (Duncan et al., 
2021), and nutrient status and productivity (Bush et al., 2016). Diatom 
assemblages can also be used to parse apart climatic and human-induced 
vegetation changes in lake sediment records (e.g., Bush et al., 2000) 
(Fig. 1). 

Lake sediments also contain stable isotopes and chemical elements 
that can shed light on pre-Columbian human activity (Fig. 1) (Hodell 
et al., 1995, 2005). For example, Ca++ and K+ concentrations were 
used to provide information on lake level changes related to climatic 
fluctuations alongside human activity (Bush et al., 2000; Sahoo et al., 
2019). More recently, micro- X-ray fluorescence (XRF) has become a 
standard tool in paleolimnology, including multivariate analysis of XRF 
data (Parsons et al., 2018) or ratios of cation concentrations, such as 
Ca/Ti (proxy for drought), Fe/Mn (proxy for lake depth) or Rb/Sr (proxy 
for grain size) (Davies et al., 2015). XRF data have been used to 
reconstruct human-induced soil runoff and erosion (Åkesson et al., 
2019), and to place human activities in a context of environmental 

Fig. 5. Microfossils found in Amazonian lakes that can indicate human activity 
or environmental change. The top panel shows a pollen grain of Zea mays 
(corn), and the bottom panel shows a diatom, Discostella steligera (Cleve & 
Grun.) Houk & Klee, which can indicate water turbidity or lake level. (Photos: 
Majoi de Novaes Nascimento). 
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change (Aniceto et al., 2014; Maezumi et al., 2018b; Rodríguez-Zorro 
et al., 2015). Sediment color, which reflects abundances of organic 
material and clays, can also provide information on environmental 
rhythms or human-induced change (Bush et al., 2000, 2017; Rodbell 
et al., 1999). 

4. Ethnographic, ethnohistorical and ethnoecological data 
provide insights into pre-Columbian Indigenous human activity 
and vegetation change 

Ethnographic, ethnohistorical and ethnoecological studies can be 
used to assess, document, interpret and obtain insights from Indigenous 
and local knowledge systems (for example see Fig. 6). Indigenous and 
local knowledge systems provide valuable information that can be used 
to interpret pre-Columbian human activities (Fig. 1) (Cassino et al., 
2019), such as: (i) resource use and management, including past and 
modern distributions of plant resources (Cassino et al., 2019; Levis et al., 
2018, 2020); (ii) how lifestyles and resource management systems in
fluence, and are influenced by landscapes (Balée, 2006); (iii) the tech
nological and labour constraints on resource use (Junqueira et al., 
2016); and (iv) the population densities that can be sustained in 
different ecosystems and by different production systems (Heckenberger 
et al., 2008). 

Ethnography refers to the in-depth description of everyday life and 

practice of a given culture or society [Oxford (2016); see also Ham
mersley and Atkinson (2007) for a broader definition], and ethnohistory 
combines ethnography with the scrutiny of historical records and other 
sources of information (Axtell, 1979). Ethnoecology is the study of 
people’s interactions with their environment, often with special atten
tion to current knowledge and practices concerning resource use and 
management, including the subdisciplines of ethnobotany and ethno
zoology (Martin, 2004). The subdiscipline of ethnoarchaeology involves 
ethnographic studies performed by archaeologists with an explicit focus 
on material culture (Politis, 2014). Much of the culture and resource 
management practices of the current inhabitants of Amazonia have been 
inherited from pre-Columbian populations, but transformed to different 
extents because of the heterogeneous and discontinuous history of 
human occupation in the region (Cleary, 2001; Denevan, 2001). For 
example, European arrival caused a massive die-off of Indigenous pop
ulations (Denevan, 1992), and many of the remaining groups were 
fragmented, displaced, or enslaved during European colonization 
(Dobyns, 1966). Thus, the projection of ethnographic data to past life
styles and production systems requires caution (McClenachan et al., 
2015). Ethnographic data cannot always be tied to human activity at 
specific times in the past, but local Indigenous knowledge is crucial to 
locating ancestral forests, anthropogenic soils and other signs of human 
activity, especially in remote regions (Franco-Moraes et al., 2019; 
Kopenawa and Albert, 2023). 

Indigenous Peoples are the descendants of native ethnic groups that 
retain historical and cultural connections with pre-Columbian Indige
nous societies, though major social disruptions and upheavals occurred 
with European colonizations (Cook, 1998; Livi-Bacci, 2016). Most 
ethnographic and ethnoecological studies were done by non-Indigenous 
scientists. Recent collaborative studies with contemporary Indigenous 
people have posited that Amazonian ecosystems have been transformed 
by an extensive and long-term network of social relations and in
terconnections between humans (e.g., Heckenberger et al., 2008; 
Ribeiro et al., 2023). Future research should promote participatory and 
collaborative approaches, as Indigenous people and their knowledge 
systems can inspire new ideas to enhance understanding of human ac
tivities and vegetation changes (for example see Fig. 6). 

Archaeological evidence combined with observation of Indigenous 
production systems suggests, for example, that pre-Columbian produc
tion systems in some regions seem to have been much more based on 
agroforestry and on the management of forest and aquatic resources 
compared with colonial systems (Maezumi et al., 2018a; Moraes, 2015; 
Neves, 2013; Shepard et al., 2020). Ethnographic work on current soil 
and waste management systems has also been essential to our under
standing of the processes that led to the formation of Amazonian Dark 
Earth (ADE) (Hecht, 2003; Schmidt et al., 2014; Winklerprins, 2009). 

The variance and scarcity of ethnographic data limits extrapolations 
of locally derived information to other regions within Amazonia. For 
example, while major crops like maize and manioc were grown in most 
regions of the basin, some minor crops, or useful native species, that are 
culturally or economically important in a certain region may not be so in 
others. Instead of a direct projection of the present into the past, 
ethnographical research provides insights to further understand ancient 
Indigenous livelihoods, resource management strategies and their po
tential impacts in past and current landscapes (McClenachan et al., 
2015). Ethnographic studies also provide valuable information on 
Indigenous resource use and societal practice since European coloniza
tion, and facilitate disentangling the effects of pre- and post-Colonial 
human activities in current landscapes (Forline, 2008). Ethnographic 
data can be paired with linguistics, as it is known that groups within the 
same language families are more likely to share similar resource man
agement systems, e.g., the Arawak (Eriksen and Danielsen, 2014). His
toric distributions of Indigenous languages (e.g., Eriksen, 2011), may 
thus facilitate ethnographic projections across space since European 
colonization. 

Historical documents originating during the early colonization of 

Fig. 6. Examples of ethnographic studies and working with Indigenous and 
local people in Amazonia. Top panel shows researcher Carolina Levis con
ducting an ethnoecological study with a local resident of the Tapajós National 
Forest of Brazil (Photo taken in 2014 by Bernardo Flores). Bottom panel shows 
researchers Paul Colinvaux (right), Paulo de Oliveira (second from right) and 
Melanie Reidinger (left) exchanging knowledge of microfossils and Amazonian 
plants with members of the Siona ethinic group (Photo taken in 1988 by 
Mark Bush). 
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Amazonia may also provide insight into pre-Columbian Indigenous land 
use systems. Francisco Orellana led the first expedition down the 
Amazon River in 1540 CE, which was recorded by Gaspar de Carvajal 
(Medina, 1934). Early colonists moved in and established Jesuit mis
sions later in the 1600s CE in several regions (Reeve, 1994), and the 
Amazonian Rubber Boom occurred from ca. 1850–1920 CE (Hecht and 
Cockburn, 2010; Weinstein, 1983). All these events had corresponding 
historical documents that recorded aspects of Indigenous Peoples and 
their interactions with the colonists. 

The spatial resolution of ethnographic records and historical data has 
the potential to be very high (Fig. 4). There is also a high potential 
temporal resolution of both historical and ethnographic records, though 
available data through time are relatively sparse. The temporal limit of 
historical documents encompasses only the last several hundred years 
since European arrival, and the temporal limit of ethnographic records is 
bound by the memories of local residents, although it can extend much 
further back in time through knowledge transmission across generations 
(Fig. 4b). Because of the fragmentation and upheaval of Indigenous 
populations after European colonization, it remains contentious as to 
how far back in time ethnography can be extrapolated back. In some 
cases there is a strong cultural and historical continuity between ancient 
and contemporary Indigenous Peoples, but in other cases contemporary 
Indigenous Peoples have inhabited their current lands for only several 
decades (e.g., the Kichwa People of Andean descent that now inhabit 
areas of lowland Ecuador). 

5. Modern datasets provide insight to pre-Columbian 
Indigenous human activities and vegetation change: biological 
collections and remote sensing data 

Biological collection records include plant and animal surveys (in
ventories), biological or ecological monitoring networks (e.g., Ander
son-Teixeira et al., 2015; Malhi et al., 2002; ter Steege et al., 2013), and 
herbarium or museum specimens (e.g., Feeley and Silman, 2011) (for 
example see Fig. 7). These biological collection records are used to assess 
the presence, absence, and abundances of plants and animals in modern 
ecosystems (or those during the historic period). Although biological 
records provide valuable information about past (pre- and post-colonial) 
activities, they do not directly measure pre-Columbian Indigenous in
fluences on ecosystems (Fig. 1). Biological records need linkages with 
archaeological, paleoecological, genetic, or ethnographic data on the 
degree and form of past human activities to infer cause and effect re
lationships (e.g., Heijink et al., 2022; Heijink et al., 2020; Levis et al., 

2017; Piperno et al., 2021). 
Past and current human activities are increasingly recognized as 

factors influencing species’ distributions (Boivin et al., 2016; Di Marco 
and Santini, 2015; Gallardo et al., 2015; Guisan and Thuiller, 2005; 
Halpern et al., 2008). Humans have modified the distribution range and 
abundance of several plant species, expanding the distribution of useful 
and domesticated plants more often than plants without a documented 
use to humans (Balée, 1989; Levis et al., 2017, Coelho et al., 2021). For 
instance, manioc (Manihot esculenta) was cultivated by Indigenous 
people throughout the Holocene (Piperno, 2011). Currently, domesti
cated manioc populations are cultivated throughout the tropics, while 
the direct ancestor of domesticated manioc (M. flabellifolia) is limited to 
South America (Olsen and Schaal, 1999). Differences between the nat
ural distribution and the human-modified distribution of cultivated 
species, and especially those with domesticated populations can indicate 
past human activities. Several palms and trees that are used for food are 
abundant in plant assemblages of archaeological sites (Balée, 1989; 
Junqueira et al., 2010). Modern plant inventories that are closer to 
archaeological sites also tend to have a higher abundance and diversity 
of useful and domesticated plants (Levis et al., 2012, 2017; Thomas 
et al., 2015). 

Plant genetic material (DNA) is typically derived from plants but can 
also be found in soils and sediments. Genetic material from plant re
mains can be linked with past events in human history, such as plant 
domestication and migrations (Fig. 1) (e.g. Clement, 1988a; Clement, 
1988b; Gutaker and Burbano, 2017; Moreira et al., 2017; Roullier et al., 
2013). Genetic studies can also provide information about species with 
populations that were domesticated by humans, because selection and 
cultivation of desirable phenotypes results in changes in morphology, 
physiology, and genotype of descendent populations (Emshwiller, 2006; 
Harlan, 1992; Olsen and Schaal, 2001). The whole set of selected 
phenotypic changes in a species is termed its domestication syndrome, 
which can be studied with morphological, chemical, archaeobotanical, 
and molecular genetic methods (e.g. Emshwiller, 2006; Meyer et al., 
2012; Smith, 2006). 

Species with populations with some degree of domestication show 
patterns of morphological variation and genetic diversity and structure 
across geographical space that result from domestication events, 
dispersal and subsequent diversification (Meyer and Purugganan, 2013). 
Economically important domesticates are more likely to show dramatic 
morphological changes, such as a 2000% increase in fruit size from wild 
source populations of peach palm (Bactris gasipaes) compared with some 
domesticated populations (Clement, 1988b). Dispersal events are often 
accompanied by other natural and human selection pressures, resulting 
in diversification of uses, variation in morphology, chemical composi
tion and physiology (Meyer and Purugganan, 2013), and adaptation to 
domesticated landscapes (Clement, 1999). 

Until very recently, plant geneticists worked exclusively with living 
plants or samples collected over the last 200–300 years (e.g., Roullier 
et al., 2013). Over the last decade, new molecular genetic methods have 
allowed the extraction and analysis of DNA from archaeobotanical re
mains (Wales et al., 2014). Ancient DNA (aDNA) is increasing the ability 
to document the genetic history of plants, can differentiate crops from 
their wild ancestors, or estimate genetic change and migration of 
domesticated plants or cultivars over time (Freitas et al., 2003; McLa
chlan and Clark, 2005; Piperno, 2011). It is now even possible to extract 
and date aDNA recovered from pollen grains found in lake sediments 
and historical samples (Gutaker and Burbano, 2017; Parducci et al., 
2017). aDNA is denatured very rapidly in tropical lake sediments (due to 
the hot, wet conditions), though extraction has been successful in the 
African tropics (Bremond et al., 2017). Geographic representation of 
aDNA samples is patchy, although many crop plants have been 
databased. 

Biological collection records can be collected from anywhere on 
Earth, so their potential spatial limit is endless (Fig. 4). To date, how
ever, sampling covers only a small portion of the 6 million km2 of 

Fig. 7. Researcher Carolina Levis measures and identifies a piquiá tree (Car
yocar villosum) with a local resident of the Tapajós National Forest of Brazil 
(Photo: Bernardo Flores). 
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Amazonia (Carvalho et al., 2023; ter Steege et al., 2013). Ground based 
surveys of plant and animal distributions and abundances can also have 
high spatial resolution, with hierarchies of transects or 1-ha plots 
commonly clustered within a region (e.g., ter Steege et al., 2013). Bio
logical inventories can also be measured at yearly frequencies, and have 
high temporal resolution, but most repeated censuses only span a few 
decades (Malhi et al., 2002; Phillips et al., 1994) (Fig. 4). 

Ground-based biological collections and satellite imagery are often 
paired in modern ecological and global change studies. Satellite imagery 
has also been used to infer soil and vegetation legacies of pre-Columbian 
land use (Iriarte, 2016; Palace et al., 2017; Thayn et al., 2011). Satellite 
data from Landsat, Sentinel, and MODIS, typically capture landscape 
features at 30-m to 1-km spatial resolution (Fig. 4). Landsat has been 
used to detect legacies of pre-Columbian land use (Heckenberger et al., 
2003; Söderström et al., 2016), and MODIS has been used to detect or 
predict Amazonian Dark Earth (ADE) (Palace et al., 2017; Thayn et al., 
2011). This detection is possible because pre-Columbian Indigenous 
Peoples permanently changed the soil characteristics, which affects the 
types of vegetation that can grow on those soils (Junqueira et al., 2011). 
The differences in modern biomass between ADE and forested non-ADE 
sites within the same region is also detectable using MODIS satellite 
imagery (Palace et al., 2017). 

Remotely sensed data has low temporal limits (Fig. 4). Satellite im
ages are only available for the last few decades, although aerial images 
may extend further back in time. However, they have higher spatial 
limits than biological collections, and usually have Amazonian-wide 
spatial coverage (Fig. 4). 

6. Dating data sources and proxies used in assessing pre- 
Columbian Indigenous human activity and vegetation change 

Different scientific disciplines assessing pre-Columbian Indigenous 
human activities place differing emphases on dating or age control of 
their data sources or proxies. In soils, archaeologists and paleoecologists 
typically use 14C AMS dating (radiocarbon dating) to obtain ages on 
specific material(s) of interest. In archaeological surveys, multiple ages 
are usually derived from specific horizons of interest where artifacts are 
recovered (e.g., Roosevelt et al., 1996). Sometimes, however, ages of 
specific horizons are inferred from a known type of pottery or artifact 
that has been recovered and dated from another location (e.g., McEwan, 
2001). Paleoecologists will typically obtain dates from individual 
charcoal fragments or conglomerations of phytoliths recovered from soil 
cores or profiles (e.g., Heijink et al., 2022; McMichael et al., 2012a; 
Piperno et al., 2021; Watling et al., 2017). In both archaeological and 
paleoecological surveys in soils, repeated dating across sites can help 
determine the synchronicity of events across space. Because of soil 
bioturbation, age-depth models are not applied to soil profiles. General 
stratigraphic trends, however, are often intact (Piperno et al., 2021; 
Watling et al., 2017). 

Lake sediments typically retain stratigraphic integrity, and age-depth 
models (e.g., Blaauw and Christen, 2011) are often used to reconstruct a 
temporally continuous sedimentary sequence. The age-depth models 
typically require fewer 14C dates than may be obtained with soil surveys, 
but the more dates obtained on a sequence, the more confidence can be 
placed in the model. With lake sediments, specific layers of change or 
markers of human activity can be directly dated to provide additional 
confidence for the timing of those events. Additional temporal control 
can also be placed on the younger sections of lake sediment cores using 
210Pb dating, which can be used on sediments less than 150 years old (e. 
g., Sanchez-Cabeza and Ruiz-Fernández, 2012). Age-depth models can 
incorporate mixtures of 210Pb and 14C dates (Aquino-López et al., 2018), 
which can be particularly useful for increasing confidence in the ages of 
sediments around the period of European Contact. 

The other data sources included in this review are not based on 
laboratory dating of materials or sediments. Historical records have 
specific ages corresponding to the dates they were produced. It is not 

possible to place specific dates or ages on Indigenous knowledge, or its 
interpretation through the studies of ethnography, ethnohistory, or 
ethnoecology. It is possible, however, to correlate some historical events 
or personal events, such as the arrival of missionaries in an Indigenous 
community or abandonment of a village with changes in resource use 
and management. This information is crucial to understanding how pre- 
Columbian people lived, even though specific ages are difficult to 
obtain. 

Modern datasets, including living plants and museum specimens, 
may have specific dates recorded. Inferring an age when pre-Columbian 
Indigenous people shaped plant abundances or plant growth patterns 
(for instance) is possible with the direct dating of living materials using a 
combination of dendrochronology, radiocarbon analysis, stable isotope 
analysis and DNA analysis (Caetano-Andrade et al., 2020). Recent ad
vances in genetic methods have ages inferred also from molecular clocks 
and DNA-based dating method for ancient genomes (Kistler et al., 2020). 

7. Discussion: moving forward 

Understanding the interactions of pre-Columbian people and their 
environments in Amazonia is important for sustainability science, con
servation biology and cultural anthropology (Levis et al., 2017; Mayle 
and Iriarte, 2014; McMichael et al., 2017; Roberts et al., 2017; Szabó 
and Hédl, 2011; Watling et al., 2017; WinklerPrins and Levis, 2020). 
Here we have provided a review of the most commonly used sources and 
proxies for reconstructing pre-Columbian human activity in Amazonia 
(Fig. 1) and have described the associated advantages and limitations of 
each by assessing their potential spatial and temporal resolution and 
limits (Fig. 4). We acknowledge that a comprehensive assessment of all 
proxies of Indigenous human activity is beyond the scope of this 
manuscript. For example, proxies such as lipid biomarkers have been 
used to assess the components of anthropogenic soils (Glaser, 2007). 
Fecal biomarkers are a newly emerging proxy that is being used to detect 
past human activity (Argiriadis et al., 2018; Zocatelli et al., 2017). These 
proxies have not yet been used in Amazonian systems, though show 
great promise in other geographic regions. The preservation of bio
markers and sterols in the humid tropics, however, is likely poorer than 
in other areas. 

Assessments of the long-term Indigenous history in Amazonia would 
be stronger if ‘absence data’ from all lines of evidence were reported or 
archived in data repositories. Ecological datasets, including plant in
ventory records, include the presence, absence, and abundance of species 
within a given study area (e.g. Hubbell, 1979; ter Steege et al., 2013), 
allowing for more robust statistical analyses than presence-only analysis 
often applied to archaeological datasets (e.g., McMichael et al., 2014a; 
McMichael et al., 2017). To fully understand the impact of 
pre-Columbian people in Amazonian landscapes, the reporting of 
‘absence data’ (i.e., when there is no evidence of past human activity) is 
crucial. For example, when identifying earthworks using remotely 
sensed data, the total area surveyed and total number of earthworks 
found should be reported so that site densities can be calculated and 
compared across regions. The entire area sampled and information on 
the absence of ADEs using field-based surveys is also rarely reported, and 
the varying densities of ADEs across the landscape cannot yet be 
calculated. The same approach should apply for archaeological surveys, 
in which generally a wide area is initially surveyed before determining 
excavation locations. We suggest that efforts to compile and build re
positories of archaeological information should develop guidelines and 
protocols for reporting and documenting absence data. 

The ‘absence’ of evidence of human activities from paleoecological 
proxies, including charcoal, pollen, and phytoliths is reported. However, 
because these lines of evidence come from a limited amount of sample 
material, it is possible that they are present but not detected. Thus, the 
absence of evidence is not necessarily evidence of absence. This issue is 
partially overcome with repeated sampling in the case of soil cores (i.e., 
multiple cores collected and analysed per locality) (e.g., Heijink et al., 
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2022; McMichael et al., 2015; McMichael et al., 2012a; Piperno et al., 
2021), and with continuous sampling and the analyses of multiple cores 
in a region in the case of lake sediments (e.g., Bush et al., 2007; Carson 
et al., 2014). 

Several predictive models have been developed for various types of 
archaeological features in Amazonia and for the overall likely distribu
tion of pre-Columbian Indigenous Peoples in the region, which provide 
targets for future archaeological surveys in the ca. 6 million km2 of 
Amazonian forests (McMichael et al., 2014a, 2014b, 2017; Souza et al., 
2018; Walker et al., 2023). Due to the lack of ‘absence data’, the only 
approaches available for these predictions are models that require 
presence-only data (i.e., that do not require absence data). Absence data 
of all types would help to validate and refine these models on both 
regional and continental-wide scales, and open doors to an array of 
additional modelling approaches that could be employed (McMichael 
et al., 2017). All types of models and other macro-paleoecological and 
macro-archaeological syntheses would also further benefit by including 
more precision in the geographic coordinates of localities being studied 
(i.e., to ca. ± 200 m spatial resolution), and more precision in the time 
bins of analysis. 

Perhaps the best way to strengthen assessments of past human ac
tivity is via an interdisciplinary approach, pairing multiple proxies and 
multiple types of data sources (Carson et al., 2014; Mayle and Iriarte, 
2014; Watling et al., 2017; Whitney et al., 2014). Without this pairing, it 
can be difficult to determine whether the observed pattern is related to 
human activity or other forcing mechanisms. Ideally, though not 
necessarily, those pairings should be spatially overlapped. For example, 
Levis et al. (2012) paired plant distribution information with charcoal 
recovered from soils beneath them, and found a higher percentage of 
useful species in plots that contained higher amounts of charcoal in the 
vicinity of archaeological sites. It is also well documented how phytolith 
and pollen data complement one another in paleoecological and 
archaeological reconstructions (Åkesson et al., 2021; Mayle and Iriarte, 
2014; Piperno, 2006). Phytoliths tend to be more sensitive to detecting 
cultivation, forest openings, and some basal angiosperm and eudicoty
ledon tree taxa, particularly in wet closed canopy forests (as opposed to 
the savanna ecotone regions), whereas pollen can detect changes in tree 
taxon abundances that remain undetectable in phytolith analyses 
(Åkesson et al., 2021; Piperno and McMichael, 2023). Phytoliths iden
tify basal angiosperm and eudicotyledon taxa that pollen does not, and 
the two are highly complementary when they can be studied together 
(Piperno and McMichael, 2023). Phytolith analysis has also been paired 
with starch grain and stable carbon isotope analysis in archaeological 
settings for a more comprehensive view of the diet and lifestyle of 
pre-Columbian Indigenous people in Amazonia (Iriarte et al., 2010; 
McKey et al., 2010). The pairing of proxies, or using multi-proxy ap
proaches, can also aid in detectability of past human influences whereas 
single proxies may lack detectability of specific lines of evidence. 

To move forward, the integration of data needs to occur across 
proxies, data sources, and consider both spatial and temporal scales 
(Fig. 4). Either within or between archives, a multi-proxy approach is 
more sensitive to detecting past human activity than a single-proxy 
approach, providing more confidence in conclusions on the presence 
or absence of pre-Columbian Indigenous human activity and the impact 
that they caused on the landscape (Fig. 1) (Clement et al., 2015; Iriarte, 
2016; Mayle and Iriarte, 2014; Piperno, 2006). Recent research has 
already begun to integrate: (i) lake sediment data with soil survey data 
from areas within the watershed (McMichael et al., 2012b), (ii) terres
trial soil archives with archaeological sites containing earthworks 
(Watling et al., 2017), (iii) lake sediment records, even with lakes of 
different sizes reflecting different source areas, with archaeological sites 
(Carson et al., 2014; Maezumi et al., 2018b; Whitney et al., 2013), (iv) 
geospatial patterns of plant distributions with archaeological sites across 
Amazonia (Levis et al., 2017). As trees in Amazonia can also be directly 
dated (Brienen and Zuidema, 2006; Chambers et al., 1998; Schöngart 
et al., 2015), pairing the age of the modern forest with archaeological, 

paleoecological and historical data could also prove invaluable. In a 
recent example, Caetano Andrade et al. (2019) integrated dendrochro
nology and historical data to evaluate Indigenous and traditional man
agement of a Brazil nut (Bertholletia excelsa) stand near an 
archaeological site south of Manaus. 

If the advantages and limitations of data used to infer pre-Columbian 
Indigenous human activity are recognized and acknowledged, particu
larly regarding spatial and temporal scale (Fig. 4), then disagreement 
among existing and future datasets may be minimized. We also highlight 
the potential and importance of bridging ethnography and ethnoecology 
with historical records, archaeological data, and paleoecological data. 
Importantly, but often not considered, the voices and knowledge of 
Indigenous Peoples should also be integrated into scientific research 
designs (Trisos et al., 2021). Together, these recommendations can 
advance the understanding of the complexity and variation of 
pre-Columbian Indigenous human influences in tropical ecosystems, 
such as Amazonia. 
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Huanchaca Mesetta. Noel Kempff Mercado National Park, NE Bolivia.  

Maezumi, S.Y., Alves, D., Robinson, M., de Souza, J.G., Levis, C., Barnett, R.L., de 
Oliveira, E.A., Urrego, D., Schaan, D., Iriarte, J., 2018a. The legacy of 4,500 years of 
polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547. 

Maezumi, S.Y., Gosling, W.D., Kirschner, J., Chevalier, M., Cornelissen, H.L., 
Heinecke, T., McMichael, C.N., 2021. A Modern Analogue Matching Approach to 
Characterize Fire Temperatures and Plant Species from Charcoal. Palaeogeography, 
Palaeoclimatology, Palaeoecology, 110580.  

Maezumi, S.Y., Whitney, B.S., Mayle, F.E., de Souza, J.G., Iriarte, J., 2018b. Reassessing 
climate and pre-Columbian drivers of paleofire activity in the Bolivian Amazon. 
Quat. Int. 488, 81–94. 

Malhi, Y., Phillips, O.L., Lloyd, J., Baker, T., Wright, J., Almeida, S., Arroyo, L., 
Frederiksen, T., Grace, J., Higuchi, N., Killeen, T., Laurance, W.F., Leano, C., 
Lewis, S., Meir, P., Menteagudo, A., Neill, D., Nunez Vargas, P., Panfil, S.N., 
Patino, S., Pitman, N., Quesada, C.A., Rudas-Ll, A., Solomao, R., Saleska, S., Silva, N., 
Silveira, M., Sombroek, W.G., Valencia, R., Vasquez Martinez, R., Vieira, I.C.G., 
Vinceti, B., 2002. An international network to monitor the structure, composition 
and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439–450. 

Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., Nobre, C.A., 2008. Climate 
change, deforestation, and the fate of the Amazon. Science 319, 169–172. 

Marlon, J.R., Bartlein, P.J., Daniau, A.-L., Harrison, S.P., Maezumi, S.Y., Power, M.J., 
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Tengö, M., Brondizio, E.S., Elmqvist, T., Malmer, P., Spierenburg, M., 2014. Connecting 
diverse knowledge systems for enhanced ecosystem governance: the multiple 
evidence base approach. Ambio 43, 579–591. 

ter Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E., 
Phillips, O.L., Castilho, C.V., Magnusson, W.E., Molino, J.-F., Monteagudo, A., Núñez 
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